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SI Introduction
In this appendix, we derive some results regarding the coupling of atomic emitters to the phonon polaritions characteristic of polar
crystals such as hBN and SiC. In particular, we consider atom-field interactions governed by the nonrelativistic Pauli–Schrodinger
Hamiltonian H :

H = Ha + Hem + Hint

Ha =

(∑
i

p2
i

2me
− e2

4πε0ri

)

Hem =
∑
k

∫
dr
∫

dω ~ω
(
f †k (r, ω)fk (r, ω) +

1

2

)
Hint =

∑
i

e

2m
(pi · A(ri) + A(ri) · pi) +

e2

2m
A2(ri), [S1]

where Ha is the atomic Hamiltonian, Hint is the atom-field interaction, and A is the vector potential operator. The minimal-coupling
interaction Hamiltonian presented above is related to the more well-known dipole interaction Hamiltonian: −d · E + self-energy, by
a unitary transformation in the long-wavelength (dipole) approximation (1). In this work, we take the dipole approximation. Thus, we
take as our interaction Hamiltonian Hint = −d ·E. For very small wavevector PhPs, this may not be justified, but in this work, we work
with parameters where the dipole approximation provides a very good approximation to the dynamics of the emitter.

The approach that we take accounts for losses via the formalism of macroscopic quantum electrodynamics (QED). The primary
physical difference between QED without losses and QED with losses lies in the elementary excitations. In the lossless formalism,
the excitations can be seen as quanta of electromagnetic modes. In the lossy formalism, the excitations cannot be seen as quanta of
electromagnetic modes because the modes are no longer complete. Rather, the elementary excitations are point dipoles which are
induced in the material. These excitations are characterized by position, frequency, and orientation. Nevertheless, as we show later,
the results we obtain from this formalism in the limit of vanishing losses completely agree with the results obtained from a quantization
scheme in which we take the elementary excitations to be surface PhP modes.

The electric field operator in the framework of macroscopic QED is given by (2, 3):

Ei(r) = i

√
~
πε0

∫
dr′
∫

dω′
ω
′2

c2

∑
k′

√
Im ε(r′, ω′)

(
Gik′(r, r′, ω′)f̂k′(r′, ω′)−H.c

)
, [S2]

where Gij is the dyadic Green function of the Maxwell equations, satisfying ∇×∇ × Gi − ε(r, ω)ω
2

c2
Gi = δ(r − r′)êi . The operator

f̂
(†)
j (r, ω) annihilates (creates) a lossy excitation of frequency ω, at position r, and in direction j . It satisfies bosonic commutation

relations, namely:
[
f̂i(r, ω), f̂ †j (r′, ω′)

]
= δij δ(ω − ω′)δ(r− r′). When applying the Fermi Golden Rule, the initial state is |e, 0〉, while

the final states are of the form |g , x1ω1k1, ...xNωN kN 〉 [S2], where g represents a ground atomic state, e represents an excited atomic
state, and |xωk〉 ≡ f̂ †k (x, ω)|0〉 represents an excitation of the electromagnetic field.

SI Optical Response of PhP Materials
As prescribed by Eq. S2, we must compute the Green function of a PhP supporting system. The simplest computation involves invok-
ing the excellent approximation that the wavevector of the emitted PhPs is much larger than the photon wavelength ω

c
. This is the

electrostatic limit.
We can compute the Green function for both an anisotropic and an isotropic polar crystal with the same methods. As is well known

for a 2D-translationally invariant system, the Green function is most easily determined by writing it in Fourier space (decomposed
into parallel wavevectors) and solving the Maxwell equations for each Fourier component. This Fourier integral is computed for the
p-polarized polaritons; the s-polarized modes give a very weak contribution in the electrostatic limit. In the region above the dielectric
slab, the Green function is known once one finds the p-polarized reflectivity of the system, rp . In particular, the p-polarized green
function takes the form (3):

Gij (r, r′, ω) =
i

2

1

(2π)2

∫
dq C p

ij e
iq·ρ+ik⊥ze−iq·ρ′+ik⊥z ′ . [S3]

In the electrostatic limit relevant to our calculations, the p-polarized reflectivity takes the form (4):

C p
ij = −2ic2 rpq

ω2
ε̂i(q)ε̂j (q)∗,

where the polarization vectors are defined by: ε̂(q) ≡ q̂+i ẑ√
2

. One finds that for an isotropic slab of polar dielectric of thickness d and
permittivity ε with a superstrate of air and a nondispersive substrate of dielectric constant εs that:
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rp =
e2qd(ε− 1)(εs + ε) + (ε+ 1)(εs − ε)
e2qd(ε+ 1)(εs + ε) + (ε− 1)(εs − ε)

. [S4]

Similarly, one finds that for an anisotropic slab of polar dielectric (like hBN) of thickness d and permittivity diag(ε⊥, ε⊥, ε||) with a
superstrate of air and a nondispersive substrate of dielectric constant εs that:
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(√
rε|| + i

) (
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√
rε||
)
e2iq
√
rd +

(√
rε|| − i

) (
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rε||
)(√
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) (
εs + i

√
rε||
)
e2iq
√
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(√
rε|| + i

) (
εs − i

√
rε||
) [S5]

where r is the absolute value of the anisotropy ratio, defined by r =
∣∣∣ ε⊥ε|| ∣∣∣. The location of the poles of the imaginary part of the

reflectivity in (ω, q) space gives the dispersion relation ω(q). When losses are present, Im rp is centered around the dispersion relation.

SI Macroscopic QED at Higher Order in Perturbation Theory: Emission of Two Polaritons
In this section, we derive the frequency spectra of spontaneous emission of two excitations of the lossy electromagnetic field. These
results incorporate losses and thus elucidate the contribution of quenching and polariton launching to the decay of an excited emitter.
The derivation proceeds by application of the Fermi Golden Rule at second order in perturbation theory as applied to transitions
between an initial state |e, 0〉 and a continuum of final states with two excitations of the lossy electromagnetic field, i.e., |g , xωk , x′ω′k ′〉.
Fermi’s Golden Rule for this decay reads:

Γ =
2π

~

2 1

2

∫
drdr′

∫
dωdω′

∑
k,k′

∣∣∣∑
i1

〈g , rωk , r′ω′k ′|V |i1〉〈i1|V |e, 0〉
Ee − Ei1 + i0+

∣∣∣2δ(ω0 − ω − ω′), [S6]

where |i1〉 are intermediate states containing both the atom and field degrees of freedom. The sum is understood to be a sum over
discrete degrees of freedom and an integral over continuous ones. The factor of 1/2 comes from the fact that when we sum over all
{rωk , r′ω′k} pairs, each pair of excitations appears twice. To proceed, we express the field operators in terms of Green functions and
use three facts:

i)

Vij ,ij−1 = 〈nj , xjωj kj , xj−1ωj−1kj−1, .., .x1ω1k1|diEi |nj−1, xj−1ωj−1kj−1, ..., x1ω1k1〉

= i

√
~
πε0

d
nj ,nj−1

ij

ω2
j

c2

√
Im ε(xj , ωj )G

∗
ij ,kj (r0, xj , ωj ),

ii)

ω2

c2

∫
dr Im ε(r, ω)(GG†)(r0, r, ω) = Im G(r0, r0, ω), and

iii) For a photonic medium which is translationally invariant in-plane (as is the system we consider throughout the text):

Im Gij (r0, r0, ω) =
ω

6πc
Fp(r0, r0, ω)Dij ,

where D = diag(1/2, 1/2, 1) and Fp is the Purcell factor for one-photon emission for the z-polarized dipole (frequency ω and position
r0) near this material (5). As a reminder, this Purcell factor is equal to 3c3

2ω3

∫
dq q2e−2qz0Im rp(q , ω).

Defining (note that this definition differs from that in the main text by a factor of the squared electron charge)

Tij (ω) =
∑
n

x gn
j xne

i

ωe − ωn − ω
+

x gn
i xne

j

ωe − ωn − (ω0 − ω)
= Tji(ω0 − ω),

we see that the second-order emission spectrum becomes:

dΓ

dω
=

4α2

9πc4
ω3(ω0 − ω)3Fp(ω)Fp(ω0 − ω)

∑
i,j ,r,s

DriDsjTij (ω)Trs(ω)∗, [S7]

Because D is diagonal, this is simply:

dΓ

dω
=

4α2

9πc4
ω3(ω0 − ω)3Fp(ω)Fp(ω0 − ω)

∑
ij

DiiDjj |Tij |2. [S8]

We focus on the case in which the transition is between two s states. In that case, only the diagonal terms of Tij are relevant, meaning
that the above sum over i , j becomes 3

2
Tzz , making the differential emission rate for two lossy excitations:

dΓ

dω
=

2

3πc4
α2ω3(ω0 − ω)3Fp(ω)Fp(ω0 − ω)|Tzz |2 [S9]

Using the fact that the free-space differential decay rate is given by (6):

Rivera et al. www.pnas.org/cgi/content/short/1713538114 2 of 5

http://www.pnas.org/cgi/content/short/1713538114


dΓ0

dω
=

4

3πc4
α2ω3(ω0 − ω)3|Tzz |2,

it follows that the spectral enhancement (defined in the main text) is:
dΓ
dω
dΓ0
dω

=
1

2
Fp(ω)Fp(ω0 − ω). [S10]

By evaluating the Tij tensors, we can easily go from the spectral enhancement factors to the two-photon Purcell factor by evaluating
the sum over states, as we do to get the rates claimed in the main text. Moreover, the actual decay rate can easily be estimated in the
case where the bandwidth of the polaritons is narrow (as is the case in what we consider) as:

Γ ≈ α2

96πc4
ω6

0

∣∣∣Tzz

(ω0

2

)∣∣∣2 ∫ dω Fp(ω)Fp(ω0 − ω), [S11]

in the case where the emission spectrum is sharply centered at ω0
2

as a result of the sharpness of the spectral enhancement.

SI Lossless Limit: Effective Mode Expansion
This section develops a mode expansion formalism, comparing it to the Green function formalism used so far, and discusses their
relative strengths and weaknesses. Although all of the decay rates that we compute can be computed through the Green function
formalism presented in SI Macroscopic QED at Higher Order in Perturbation Theory: Emission of Two Polaritons, it is difficult to extract
information such as the angular spectrum of emitted polaritons from this formalism (which we define as the angular spectrum in
the lossless limit). The reason for this difficulty is that concepts like the angular spectrum are clearly most naturally computed when
one assumes that the excitations coupled to are modes labeled by their direction of propagation. Therefore, to compute the angular
spectrum of emitted radiation, we use a formalism different from the one used in the previous sections. We will write down field
operators appropriate to the lossless situation and compute the spectrum of two-polariton emission by using Fermi’s Golden Rule
with these field operators.

It is known that in lossless and nondispersive dielectrics, the vector potential can be expressed in the form of a mode expansion:

A =
∑
n

√
~

2ε0ωn
(Fnan + hc) ,

where the Fn are the orthonormal modes of the Maxwell equations, normalized suitably. In ref. 7, it was rigorously shown by taking
the Green function formalism in the lossless limit that a mode expansion for the field operators in terms of eigenmodes (of the form
above) can be derived for polaritons. In this effective mode expansion, the field modes are normalized such that:

ε0
2ω

∫
dr F∗(r) · d(εrω

2)

dω
· F(r) =

~ω
2
.

We take as the normalization or quantization volume one which is infinite in the z-direction and has area 1 m2 in the in-plane direction.
In the electrostatic limit qc

ω
� 1, the fields in the vicinity of a well-localized emitter above a polar dielectric are of the form

F ∼ e iq·ρ−qz ê(q̂), [S12]

where ê(q̂) ≡ q̂+i ẑ√
2

. q̂ can be expressed as cos θx̂ + sin θŷ. We use this fact to compute the angular spectrum of pairs of emitted PhPs
in what follows.

We conclude this part of the discussion by noting that effective mode expansion was shown by proving that the denominator of the
Fourier-transformed Green function in the lossless limit is proportional to the energy term in the previous equation. Although we
derived this result on very general grounds (7), we explicitly show the equivalence here as a consistency check on our calculations. In
Fig. S1, we compare predictions of the mode-expansion formalism and the Green function formalism taken in the zero loss limit. The
particular prediction we address is the Purcell factor of a z-polarized dipole some distance away from hBN (Fig. S1, Left and Center)
or cBN (Fig. S1, Right). As can be seen, aside from small numerical integration error, these predictions match extremely well. In Fig.
S2, we consider the same Purcell factor, but now we compare the lossless value of the Purcell factor to the Purcell factor when realistic
losses are incorporated into the Lorentz permittivities of hBN and cBN (γ = 5 cm−1 is taken in all three cases). We can see that these
predictions agree reasonably well.

Finally, in Fig. S3, we compare the value of the Purcell factor (in hBN’s upper RS band) derived analytically to that computed
numerically through finite-difference frequency domain simulations (COMSOL). In both cases, losses are taken into account; the
distance between the atom and hBN surface is 10 nm, and the hBN thickness is 5 nm. The numerical calculations also include the
effect of s-polarized waves and nonelectrostatic effects. As can be seen from Fig. S3, despite these differences, the two calculations
agree quite well.

SI Angular Spectrum of Emitted PhPs
Now, we focus on computing the angular spectrum of radiation of PhPs emitted by an excited atomic electron. In other words, we want
the quantity

S(ω, θ, θ′) ≡ dΓ

dωdθdθ′
.

Because we want to focus only on excitation of propagating polaritons and not loss excitations, we extract the pole contribution from
the imaginary part of the p-polarized reflectivity. This is equivalent to writing field operators in the lossless limit. Writing the second-
order Fermi Golden Rule for the transition rate between an initial state |e, 0〉 and the continuum of final states |g , qq′〉, we see that:
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dΓ

dωdθdθ′
=

1

16π3~2

q(ω)q(ω0 − ω)

vg(ω)vg(ω0 − ω)

∣∣∣∑
i1

〈g , qq′|d · E|i1〉〈i1|d · E|e, 0〉
Ee − Ei1 + i0+

∣∣∣2,
where vg is the group velocity, dω

dq
. Inserting the definition of the operators, we find that the spectrum is given by:

S(ω, θ, θ′) =
α2c2

4π
ω(ω0 − ω)

q(ω)q(ω0 − ω)

vg(ω)vg(ω0 − ω)

∣∣∣F ∗iq F ∗jq′ Tij

∣∣∣2 [S13]

where

Tij (ω) =
∑
n

x gn
j xne

i

ωi − ωn − ω
+

x gn
i xne

j

ωi − ωn − (ω0 − ω)
= Tji(ω0 − ω).

We now use this to extract the form of the angular spectrum of entangled photons as a function of the electronic orbitals participating
in the transition. To give the reader a sense of how much control one may have over the angular spectrum of emitted photon pairs, we
consider four cases. In all four, the final states are s states. But the initial states will be taken to be s, dxy , dyz , and dxz states.
s→ s

In the case where the initial state is an s state, we have that Tij = 0 if i 6= j . This is because of the dipole approximation,
which fixes the intermediate state to be a p state. Therefore, if i 6= j , then Tij has a sum of terms like 〈s|xi |pk 〉〈pk |xj |s〉, where
pk = px , py , pz . Each of these terms individually vanishes, and so the entire tensor vanishes. Moreover, Txx =Tyy =Tzz ≡T because
〈px |x |s〉= 〈py |y |s〉= 〈pz |z |s〉: Therefore:

S(ω, θ, θ′) = |T |2
(
cos θ cos θ′ + sin θ sin θ′ − 1

)2
= 4|T |2 sin

4
(
θ − θ′

2

)
. (s → s) [S14]

dxy → s
In the case where the initial state is dxy , the only contributing terms are Txy and Tyx . The argument for this statement makes use

of the fact that the dxy has an angular dependence that can be written in Cartesian coordinates as xy . We start proving this claim by
examining the Tzi components. If one of the indices is z , then it will either be the case that the intermediate state must be a pz state
(to have overlap with the s state) or that there will be a matrix element of the form 〈pi |z |dxy〉. The first case gives zero because dxy has
no transition dipole moment with z . The second case also gives zero because dxy has no z-polarized dipole moment with any p orbital.
Thus, the Tzi components vanish. The Txx and Tyy components also vanish because dxy has no (x, y)-polarized dipole moment with
px ,y . Therefore:

S(ω, θ, θ′) =
(
Txy(ω) cos θ sin θ′ + Txy(ω0 − ω) sin θ cos θ′

)2
. (dxy → s) [S15]

dxz → s and dyz → s
A nearly identical argument to the one above (replace all y’s with z’s or all x’s with z’s) yields:

S(ω, θ, θ′) =
(
Txz (ω) cos θ + Txz (ω0 − ω) cos θ′

)2
. (dxz → s) [S16]

S(ω, θ, θ′) =
(
Tyz (ω) sin θ + Tyz (ω0 − ω) sin θ′

)2
. (dyz → s) [S17]

SI Validity of Perturbative Approach
Finally, we discuss the validity of perturbation theory, which we use to arrive at the results above. In this work, we showed that
two-phonon-polariton emission beats one-photon emission. Were it also the case that third- and higher-order emission processes
were more important than second-order processes, it would be the case that our calculations would not be representative of the full
dynamics of the electron. We claim that this is not the case in our work. We estimate that three-phonon-polariton processes should be
slower than two-phonon-polariton processes by α(k0a)2Fp

∆ω
ω0

, with Fp the Purcell factor the emission of a single-phonon-polariton.
This factor also estimates how much slower two-phonon-polariton emission is than one-phonon-polariton emission. Taking that to be
106, ∆ω = ω0/10, λ0 = 8µm, and a = 1nm, we get that the second-order process beats the third-order process by about a factor of
2,000, making perturbation theory safe.

Although this estimate was subject to numerical assumptions, we believe this estimate is reasonable because as we saw in the main
text via a concrete numerical example, if the emitter had a competing one-phonon-polariton emission process, that would happen on
timescales of approximately 1 to 10 ps. Then, the two-phonon-polariton emission would be slower by about a factor of 1,000–10,000,
leaving no question about the validity of perturbation theory. The ratio of first-order emission to second-order emission should be
similar to the ratio between second- and third-order emission, provided all of those emissions are into polariton channels, thus lending
credibility to the estimates of the previous paragraph. In the example we provide in Extreme Enhancement of Polariton-Pair Emission
Rates, there is no competing first-order transition in our example, and that is the only reason why second-order emission becomes the
most important process. Thus, we can safely reiterate that the only reason the second-order emission is dominant is not because we
are in a nonperturbative regime, but because the first-order emission will be effectively unenhanced. This situation is analogous to a
situation in atomic physics (1) where the hydrogen 2S state can decay either by a first-order magnetic dipole transition or a second-
order two-photon electric dipole decay. The former is anomalously slow (practically forbidden), so the latter dominates the dynamics.
Nevertheless, even higher-order dynamics are known to be negligible in the decay dynamics of the 2S state.
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Fig. S1. Comparison of lossless green function formalism and mode expansion. Purcell factors calculated for the lower RS band of hBN for an hBN thickness
of 2 nm and emitter-surface separation of 10 nm (Left), the upper RS band of hBN for an hBN thickness of 2 nm and emitter-surface separation of 10 nm
(Center), and the RS band of cBN for a cBN thickness of 5 nm and emitter-surface separation of 10 nm (Right).

Fig. S2. Comparison of green function formalism with losses and mode expansion. Purcell factors calculated for the lower RS band of hBN for an hBN
thickness of 2 nm and emitter-surface separation of 10 nm (Left), the upper RS band of hBN for an hBN thickness of 2 nm and emitter-surface separation of
10 nm (Center), and the RS band of cBN for a cBN thickness of 5 nm and emitter-surface separation of 10 nm (Right).

Fig. S3. Agreement of analytical and numerical approaches. Comparison of analytic calculation for p-polarized Purcell factor including losses in the
electrostatic limit with finite-difference frequency domain (COMSOL) calculation of the Purcell factor for hBN of thickness 5 nm surrounded by air and an
emitter 10 nm away from the top surface.
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3. Scheel S, Yoshi Buhmann S (2008) Macroscopic quantum electrodynamics—concepts and applications. Acta Pys Slovaca, 58:675–809.
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