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The manipulation of quantum many-body systems is a crucial goal in quantum science. Entangled
quantum states that are symmetric under qubits permutation are of growing interest. Yet, the creation and
control of symmetric states has remained a challenge. Here, we introduce a method to universally control
symmetric states, proposing a scheme that relies solely on coherent rotations and spin squeezing. We
present protocols for the creation of different symmetric states including Schrödinger’s cat and Gottesman-
Kitaev-Preskill states. The obtained symmetric states can be transferred to traveling photonic states via
spontaneous emission, providing a powerful approach for engineering desired quantum photonic states.
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Control of symmetric systems and their applications.—
Universal control of quantum systems is a critical building
block in quantum computing and more generally in
quantum information processing. In conventional qubit-
based quantum systems, single-qubit gates and a two-qubit
entangling gate provide all the ingredients to obtain universal
control over an arbitrary number of qubits [1]. Despite this,
the creation of most states requires the sequential application
of a number of gates that grows exponentially with the
number of qubits [2]. This becomes impractical for most
states, even for amodest number of qubits (e.g., 40 qubits). A
large number of gates is incompatible with the current
architectures of quantum computers that suffer from short
coherent times [3]. Hence, sets of operations that can create
desired quantum states with a more scalable, polynomial
number of gates are highly sought after.
Recent years have shown increasing interest in quantum

states having symmetry to permutation between any two
constituent qubits. These states are used in many platforms,
such as ones encoding the quantum information in harmonic
oscillators (continuous variables), in multi-level systems
(qudits), and in ensembles of indistinguishable quantum
particles.
Famous systems in which symmetric states naturally arise

include nitrogen-vacancy centers [4], nuclear magnetic
resonance systems [5], superconducting circuits [6–8],
trapped ions [9–11], neutral atoms [12,13], and quantum
dots [14,15]. The individual quantum particles comprising
these systems are different, yet the combined system is
described by the same Hilbert space of symmetric states. For
an operation to keep the state inside the symmetric Hilbert
space, it should act symmetrically on the entire population of
particles. The simplest such operations are coherent rotations
acting simultaneously on the state of every particle and spin
squeezing of the combined state of all particles. These
operations have been thoroughly explored in theory
[16,17] and demonstrated in experiments [18–22], for

example, enabling the creation of atomic Schrödinger’s
cat states [8,23]. Nevertheless, it remained unknownwhether
such operations can create any arbitrary symmetric state and
fully control the symmetric system.
Here we show that coherent rotations together with spin

squeezing constitute universal control over symmetric
states. Any arbitrary symmetric state can be created using
a polynomial number of symmetric operations, rather than
the exponential number of operations needed in existing
conventional approaches. Our findings directly apply to
any physical system described by symmetric states that
support coherent rotations and squeezing.
Coherent rotations have been implemented in numerous

systems [20,21,24,25], but they are not sufficient for uni-
versal control. To achieve universality, we find it sufficient to
add the spin-squeezing operation. Spin squeezing is a
ubiquitous operation that acts not only on spin systems
but on any symmetric system, such as atoms, quantum dots,
or superconducting circuits [8,25–29]. For example, spin
squeezing was implemented on atoms in a cavity using
multiple lasers with different frequencies [18,29–31], or by
interaction with off-resonant light [32]. Innovative imple-
mentations of coherent control and spin squeezing in the last
decade [27–29] havemade our proposal for universal control
relevant to all state-of-the-art platforms in quantum science.
Direct transfer of symmetric states to photonic states.—

In cases where the symmetric system describes quantum
emitters, our findings have another intriguing implication.
We rely on a unique property of symmetric states: when
undergoing spontaneous emission, symmetric-state super-
positions are precisely the states that get transferred onto a
pulse of photons in the form of a single quantum-optical
mode [33]. This situation is unique because in many other
cases, the photonic state emitted in spontaneous emission
occupies many spatiotemporal modes, and observing only
part of them is expected to create a decohered mixed state,
i.e., the initial quantum state of the emitters will not be
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preserved due to the inherent “random” nature of sponta-
neous emission.
In the language of quantum information, spontaneous

emission can be considered an error channel that destroys
the information embedded in the qubits. However, in our
case, spontaneous emission is a promising way to transfer
the pure state of emitters (static qubits) to an almost single-
mode pure photonic state (flying qubits) that can be used to
store and transmit quantum information with minimal loss.
Using this direct transfer of symmetric states to photonic

pulses, the universal control of symmetric states allows us to
create high-fidelity quantum photonic states that are desired
for quantum information processing. Particularly, the fields
of photonic quantum computation and communication are in
search of an efficient way of creating specific quantum
photonic states, such as the Schrödinger cat and Gottesman-
Kitaev-Preskill (GKP) states [34]. These photonic states are
necessary resources for continuous-variable quantum infor-
mation processing [35], a rising approach that complements
the conventional, discrete-variable, qubit encoding.
To find efficient protocols for creating any arbitrary

photonic state and specifically the ones desired for quantum
information processing, we develop an optimization pro-
tocol for the controllable generation of arbitrary symmetric
states. We find sequences of squeezing and rotations that
create photonic square and hexagonal GKP states of 10 dB
squeezing with 95% and 94% fidelity, as well as two- and
four-legged Schrödinger’s cat states with 97% and 94%
fidelity, respectively. Our results convey the importance of
studying new methods for manipulating systems of

quantum emitters, especially for the ambitious goal of
achieving universal control of light in various spectral
regimes.
Creation of quantum photonic states using systems of

emitters.—Gaussian states of harmonic oscillators, i.e.,
states that have Gaussian Wigner functions [36], such as
squeezed light, can be beneficial for sensing in spectroscopy
and metrology [37]. The creation of these states requires
coherent displacements and squeezing. In contrast, non-
Gaussian states of light such as Schrödinger’s cat and GKP
states, cannot be created using only those two operations
[36]. Creating non-Gaussian states in conventional photonic
systems can only be done by acquiring strong higher-order
nonlinearities such as Kerr nonlinearity [36,38] or condi-
tional operators and postselections [39–42]. However, these
nonlinearities are relatively weak and inefficient in the
optical range. Therefore, the field of quantum optics is in
search of new ways to create non-Gaussian quantum pho-
tonic states.
The approach that we explore here for generating quantum

photonic states uses systems of emitters, where the emitters
themselves are the nonlinear element. Specifically, quantum
emitters can generate non-Gaussian photonic states through
their spontaneous emission to waveguides or optical cavities
[33]. The simplest example of a non-Gaussian state is the
single-photon Fock state, created regularly by spontaneous
emission from a single emitter. Similar approaches that rely
on spontaneous emission are implemented, for example, in
superconducting qubits [41,43], in strongly interacting
Rydberg atoms [44–46], and in other atoms coupled to

(a) (b) (c) (d)

FIG. 1. Universal control of quantum states using spin squeezing and rotations. (a),(b) Each step of the sequence consists of a coherent
rotation and squeezing. The coherent rotation is described by the unity vector of the axis n̂ and the rotation angle θ around this axis:
Rðθi; n̂iÞ ¼ exp½iðn̂ixSx þ n̂iySy þ n̂izSzÞθi�. The squeezing operation is characterized by squeezing in the x̂ and ŷ directions:
Sðαi; βiÞ ¼ exp½iðαiS2x þ βiS2yÞ�. These two operations are sufficient for efficiently creating any arbitrary state in the Hilbert space
of the permutationally symmetric states. (c) Example Wigner functions of the created states can be plotted on Bloch spheres [50], each
representing the joint state of indistinguishable emitters. (d) The spontaneous emission by such emitters can be tailored to desired states
of light, as illustrated by the corresponding Wigner functions of the emitted light pulses.
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optical cavities [47] or to nanophotonic waveguides [38,39].
Despite the success in particular cases of generation of non-
Gaussian states, it was unknown to what extent the emitters
can be manipulated and what kinds of quantum photonic
states can be created this way.
Our work shows that the lowest possible nonlinear

operations on the emitters—coherent rotations and spin
squeezing—already enable the creation of arbitrary sym-
metric states (Fig. 1). Then, spontaneous emission transfers
the quantum state, enabling controllable generation of
arbitrary photonic states [33,48,49].
Theory of symmetric states.—We consider a system of N

two-level noninteracting emitters. We use the term emitters
to describe general systems such as quantum dots, spins,
transmons, trapped ions, etc. Each of these systems can be
described in terms of symmetric states [51,52] that are
invariant under any permutation of emitters. The basis of
the symmetric states, sometimes called the Dicke ladder
[52], is defined by

jNi ¼ jee…ei;
jN − 1i ¼ 1=

ffiffiffiffi

N
p

ðjge…ei þ jeg…ei þ � � � jee…giÞ;
� � �

j1i ¼ 1=
ffiffiffiffi

N
p

ðjeg…gi þ jge…gi þ � � � jgg…eiÞ;
j0i ¼ jgg…gi:

Here jgi, jei are the ground and excited states of each
two-level emitter. Our treatment is valid regardless of their
energy gap (and, consequently, the frequency of the emitted

photons). We denote the symmetric operators Sx ¼
P

i σ
ðiÞ
x ,

Sy ¼
P

i σ
ðiÞ
y , Sz ¼

P

i σ
ðiÞ
z , where σðiÞx;y;z are the Pauli

matrices on the ith emitter. Arbitrary functions of these
operators describe all the operators that exist in the Hilbert
space of the symmetric states.

Proof of universality.—In this section, we prove that
squeezing and coherent displacements provide universal
control of symmetric states. The set of Hamiltonians fHig
is universal if any unitary can be constructed from their
respective time evolution operators UðtÞ ¼ e−iHit. As was
shown in [53], to prove universality, it is enough to show that
the algebra derived from the set spans the entire Hilbert
space, i.e., thatwe canget anyoperator in theHilbert space by
using linear combinations and commutators of fHig. Our
Hilbert space of matrices of size ðN þ 1Þ × ðN þ 1Þ is
spanned by polynomials of the symmetric operators Sx,
Sy, Sz, as shown in the SupplementalMaterial [54]. Hence, it
is enough to show that we can construct any polynomial in
Sx, Sy, Sz using only the commutations and sums of
Hamiltonians from the set fHig. In our case, this set is
coherent rotations and squeezing, i.e., fHig¼fSx;Sy;S2x;S2yg.
It is insightful to compare the quantum systems described

by symmetric states to those described by harmonic oscil-
lators. In the case of harmonic oscillators, universality cannot
be achievedusingonly coherent rotations and squeezing.The
difference can be seen already in the commutation relation
½Sx; Sy� ¼ iSz,whichdiffers from that of the analog operators
x andp obeying ½x; p� ¼ iℏ. For the symmetric operators, the
commutation relation of two 1st-order operators yields a 1st-
order operator, while for the harmonic oscillator operators,
the commutation relation provides a scalar. Introducing the
squeezing operators S2x and S2y allows us to reach the
commutation relations ½Sx; S2y� ¼ iðSzSy þ SySzÞ ¼ Sxþ
iSySz. So, by subtracting Sx, we can get the operator SySz.
The same can be done with ½Sz; S2y� and ½Sy; S2x� to get SxSy
and SxSz. Now, we incorporate SySz in the commutation
relation ½Sx; SySz� ¼ iðS2z − S2yÞ. Combining the other oper-
ators that we have achieved so far, we see that the algebra
contains all polynomials of Sx, Sy, and Sz of the 2nd power.

 

Protocol

…

Parameters CompareOp�mize
for largest 

, Final parameters

FIG. 2. Protocol for creating target symmetric states. As an input, we set the target state jψ targeti that we want to get, the desired number
of sequences M, and the operations used in each sequence (as shown in Fig. 1). The optimization protocol finds the parameters used in
each sequence to maximize the fidelity between the final state and the target state. Although we use pure states in the figure, the code
works with density matrices.
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With all the 2nd power operators in hand, we can also
construct any 3rd power operator by using commutation of
all 2nd power operators, for example ½S2x; SxSy� ¼
iS2xSz þ iSxSzSx. With this polynomial, we can reach S3x
since ½½S2x; SxSy�; Sy� ¼ S3xþ lower order terms. In this
manner, we can build 4th power operators from 3rd power
operators and so on as shown using an inductive proof in
the Supplemental Material [54].
Optimization protocol.—To create arbitrary quantum

states, we design and test an optimization protocol for
engineering a sequence of coherent rotations Rn̂ðθÞ ¼
exp½iðn̂ixSx þ n̂iySy þ n̂izSzÞθi� and squeezing operation
Sðα; βÞ ¼ exp½iðαS2x þ βS2yÞ� [Fig. 1(a)]. We demonstrate
the protocol to yield several desired symmetric states,

which translate to quantum photonic states such as
Schrödinger’s cat and GKP states. We start from the ground
state j0i and at each of M steps, perform coherent rotation
Rðθ; n̂Þ followed by squeezing Sðα; βÞ. We optimize the
parameters n̂; θ;α; β of each step to maximize the fidelity
between the final state jψðfθi; ni; αi; βigMi¼1Þi and the target
state jψ targeti (Fig. 2). We base our optimization protocol on
a random search algorithm [57] applied over initial random
guesses, and we then use the Nelder-Mead method [58] to
find the local minimum for each initial guess (see in
Supplemental Material [54]).
Illustrating the strength of our approach, the protocol

finds an eleven-step sequence that produces a square GKP
symmetric state with 98% fidelity. Figure 3 presents the

11

1

10

2 3 4 5

9 8 7 6

= ,

11

1

10

2 3 4 5

9 8 7 6

= ,

FIG. 3. Example sequence that creates a squareGKP state. Sequence for the creation of aGKP symmetric statewith 10 dB squeezing using
11 steps displaying the symmetric state of the emitters after each step. Each ith step consists of coherent rotation and squeezingwithS2x andS2y
operators. The number of emitters in the simulation is 40, and the fidelity of the final state is 98.37% compared to a square GKP symmetric
state with 10 dB squeezing. For other parameters, the movie of GKP formation can be found in the supplementary video [54].

(a)

(b)

(c)

FIG. 4. Example states that can be created using sequences of squeezing and rotation operations. (a) Two-legged and four-legged cat
states, as well as square and hexagonal GKP, states with 10 dB squeezing generated with our protocol (the third column corresponds to
Fig. 3). (b) Corresponding Wigner functions of the emitted photonic states, assuming unity efficiency of coupling to a waveguide, using
the model in [33]. (c) The fidelity between the target light states and the ones achieved by the optimization protocol, denoting the number
of steps. (The full list of parameters found by the optimization protocol can be found in Supplemental Material [54]).
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Wigner function [59] of the state on the Bloch sphere [50]
at each of the steps.
Our protocol also finds useful quantum states with high

fidelity, such as two-legged and four-legged Schrödinger’s
cat states, as well as the hexagonal GKP state. Figure 4
presents the fidelities, the number of steps, the Wigner
function of the resulting symmetric states on the sphere,
and the corresponding emitted quantum states of the
emitted light.
To take decoherence mechanisms into account, we

investigate in Supplemental Material [54] how dephasing
influences the emitters’ state during the preparation stage,
showing that for realistic systems such as superconducting
qubits and trapped ions, our protocol is feasible even with
current levels of decoherence. Specifically, we find fidel-
ities of 80%, 65%, and 30% for GKP states in super-
conducting circuits [8], in trapped ions [11], and in
Rydberg atoms [46], respectively. The rapid developments
of these platforms should increase the fidelities for creating
GKP and cat states in the near future. In [54], we also
simulate how unwanted decay channels affect the emitted
photonic state. We show that if the rate of unwanted
channels is smaller than the spontaneous emission rate,
then the emitted photonic state is very close to the single
mode calculation presented in Fig. 4(b).
Discussion.—In this work, we showed that the simplest

possible 1st and 2nd order operations (i.e., coherent
rotations and spin squeezing) provide universal control
over symmetric states of emitters. In contrast to standard
two-qubit gate approaches, our method requires only a
polynomial number of steps to create any symmetric state
(see Supplemental Material [54]). We designed an opti-
mization protocol that finds efficient sequences of such
operations for the creation of arbitrary superpositions of
symmetric states. Consequently, the creation of quantum
states of emitters that are useful for quantum computation is
possible without addressing the emitters individually (as in
Refs. [60,61]).
States of emitters that are symmetric to permutations are

especially interesting as they are the states that can be
naturally mapped to arbitrary single-mode pulses of pho-
tons [33]. Using a full multimode theory [33], we analyze
the spontaneous emission from the symmetric states created
using our protocol. We find that the emission takes the form
of single-mode traveling Schrödinger’s cat and GKP states,
which are desirable for quantum technologies. This result is
in striking difference to most current methods that can
create GKP states only in cavities in microwave frequencies
(e.g., [41]).
Compared to previous works (e.g., [44]), which were so

far limited to a linear regime where the number of emitters
is greatly larger than the number of excitations, our
approach explicitly utilizes the nonlinearity that is intrinsic
to the emitters at the high excitation regime. In addition, as
we manipulate the emitters using rotations and squeezing,

the transition into the coherent basis of the emitted light is
natural, and thus the creation of Schrödinger’s cat and GKP
states takes a relatively small number of steps.
Importantly, our protocol is also more efficient (i.e.,

requires fewer steps) for a small number of emitters N,
when compared to the conventional single- and two-qubit
gate approaches. For example, to create a square GKP for
N ¼ 10, we need three steps (see the Supplemental
Material [54]), far fewer than the number of single and
two-qubit gates needed in conventional methods: at least N
(and in some cases 2N) gates for all-to-all entanglement.
The relative efficiency of our protocol is higher for large N
due to the polynomial scaling with N, compared to
exponential in conventional protocols, as we show in
Supplemental Material [54].
Outlook.—Our protocols considered manipulation of the

emitters only before their emission. We suspect that by
manipulating the emitters during emission, using nonlinear
operations like squeezing, as well as detuning the emitter
frequencies, exotic multimode photonic states can be
created efficiently, such as NOON, multimode squeezed
states, and cluster states.
The protocol presented in this work can be implemented

in many modern quantum information processing plat-
forms. For example, platforms of trapped ions [9,11],
superconducting circuits [6,8], and Rydberg atoms [46]
could be ideal candidates as the symmetric operations
considered in this work naturally appear in them.
Furthermore, the rising field of waveguide quantum
electrodynamics (QED) [62], along with the more mature
field of cavity QED [13,63] are promising platforms for
implementing our proposal, providing high collection and
detection efficiency of the emitted photonic state. We note
that the decoherence mechanisms in each of these platforms
are analyzed in in Supplemental Material [54] and show
that even with current levels of decoherence our proposal is
feasible at least for superconducting circuits. The rapid
development of all the platforms makes our proposal even
more feasible in the near future.
Looking forward, we see the utilization of low-order

nonlinearities such as spin squeezing in different platforms
as an efficient method for universal control of emitters and
for creating sources of both single and multimode photonic
states. Even though our protocol was numerically tested for
a moderate number of emitters, it can be applied to large
systems with thousands of emitters. For a large number of
emitters (e.g., N ¼ 103) the realization of our protocol can
be difficult in the presence of decoherence. The inves-
tigation of decoherence mechanisms and scaling for a large
number of emitters is an important aspect for future
research. Our results emphasize that multipartite entangled
states of emitters can be achieved without the need to
control the emitters individually.

Supplementary calculations and derivations can be found
at [64].
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