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Section S1. Derivation of transition radiation from a uniaxial slab  

Below we show the detailed derivation of transition radiation [1-5]. As shown in Fig. 1, a swift electron 

with a charge of 𝑞 moves along the +𝑧̂ direction and perpendicularly penetrates through an epsilon-near-
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zero uniaxial slab with a thickness 𝑑. The uniaxial slab (denoted as region 2), for example, can be constructed 

by the hexagonal BN with a relative permittivity of [𝜀⊥, 𝜀⊥, 𝜀z], which has 𝜀z → 0 around the frequency of 

24.5 THz. For illustration, both the superstrate (region 1) and the substrate (region 3) are free space with a 

relative permittivity of 𝜀1 = 𝜀3 = 1.  

Within the framework of macroscopic Maxwell equations, the induced current by a moving electron with 

a velocity 𝑣 can be expressed as 

𝐽𝑞̅(𝑟̅, 𝑡) = 𝑧̂𝑞𝑣𝛿(𝑥)𝛿(𝑦)𝛿(𝑧 − 𝑣𝑡) (S1) 

Using the Fourier transformation (or the plane wave expansion), the expressions for the current, the 

electric field, and the magnetic field are obtained as follows [1-5]: 

𝐽q̅(𝑟̅, 𝑡) = ∫ 𝑧̂𝑗ω,κ̅⊥

q (𝑧)𝑒𝑖(𝜅̅⊥∙𝑟̅⊥−𝜔𝑡)𝑑𝜅̅⊥𝑑𝜔 (S2) 

𝐸̅(𝑟̅, 𝑡) = ∫ 𝐸̅ω,κ̅⊥
(𝑧) 𝑒𝑖(𝜅̅⊥∙𝑟̅⊥−𝜔𝑡)𝑑𝜅̅⊥𝑑𝜔 (S3) 

𝐻̅(𝑟̅, 𝑡) = ∫ 𝐻̅ω,κ̅⊥
(𝑧) 𝑒𝑖(𝜅̅⊥∙𝑟̅⊥−𝜔𝑡)𝑑𝜅̅⊥𝑑𝜔 (S4) 

where 𝜅̅⊥ = 𝑥̂𝜅x + 𝑦̂𝜅y is the wavevector component perpendicular to the electron velocity. From equations 

(S1-S2), we further have 

𝑗ω,κ̅⊥

𝑞 (𝑧) =
𝑞

(2𝜋)3 𝑒𝑖
𝜔

𝑣
𝑧
 (S5) 

Furthermore, the boundary conditions require 

𝑛̂ × (𝐸̅1⊥ − 𝐸̅2⊥)|z=0 = 0 (S6) 

𝑛̂ × (𝐻̅1⊥ − 𝐻̅2⊥)|z=0 = 0 (S7) 

𝑛̂ × (𝐸̅2⊥ − 𝐸̅3⊥)|z=d = 0 (S8) 

𝑛̂ × (𝐻̅2⊥ − 𝐻̅3⊥)|z=d = 0 (S9) 

By enforcing these boundary conditions in equations (S6-S9), the distribution of the excited magnetic 

fields in regions 1-3 can be calculated. After some derivations, we show these solutions in the cylindrical 

coordinate of 𝜌𝜙𝑧 [3, 5] as follows  

𝐻̅j(𝑟̅, 𝑡) = 𝐻̅j

q(𝑟̅, 𝑡) + 𝐻̅j
r(𝑟̅, 𝑡) ( 𝑗 = 1, 2 or 3)  (S10) 

𝐻̅1
q(𝑟̅, 𝑡) = 𝜙̂ ∫ 𝑑𝜔

𝑖𝑞

8𝜋
√

𝜔2

𝑐2 𝜀1 −
𝜔2

𝑣2 𝐻1
(1)

(√
𝜔2

𝑐2 𝜀1 −
𝜔2

𝑣2 𝜌)𝑒𝑖(
𝜔

𝑣
𝑧−𝜔𝑡)+∞

−∞
 (S11) 
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𝐻̅2
q(𝑟̅, 𝑡) = 𝜙̂ ∫ 𝑑𝜔

𝑖𝑞

8𝜋
√

𝜔2

𝑐2 𝜀z −
𝜔2

𝑣2

𝜀z

𝜀⊥
𝐻1

(1)
(√

𝜔2

𝑐2 𝜀z −
𝜔2

𝑣2

𝜀z

𝜀⊥
𝜌)𝑒𝑖(

𝜔

𝑣
𝑧−𝜔𝑡)+∞

−∞
 (S12) 

𝐻̅3
q(𝑟̅, 𝑡) = 𝜙̂ ∫ 𝑑𝜔

𝑖𝑞

8𝜋
√

𝜔2

𝑐2 𝜀3 −
𝜔2

𝑣2 𝐻1
(1)

(√
𝜔2

𝑐2 𝜀3 −
𝜔2

𝑣2 𝜌)𝑒𝑖(
𝜔

𝑣
𝑧−𝜔𝑡)+∞

−∞
 (S13) 

𝐻̅1
r(𝑟̅, 𝑡) = 𝜙̂ ∫ 𝑑𝜔

+∞

−∞
∫ 𝑑𝜅⊥

𝑖𝑞

𝜔𝜀0(2𝜋)3 𝑎1(−𝜔𝜀0𝜀1)(𝑖2𝜋𝐽1(𝜅⊥𝜌))𝑒𝑖[−𝑘z,1𝑧−𝜔𝑡]+∞

0
  (S14) 

𝐻̅2
r(𝑟̅, 𝑡) = 𝜙̂ ∫ 𝑑𝜔

+∞

−∞
∫ 𝑑𝜅⊥

𝑖𝑞

𝜔𝜀0(2𝜋)3 (−𝜔𝜀0𝜀z)(𝑖2𝜋𝐽1(𝜅⊥𝜌))(𝑎2
−𝑒−i𝑘z,2𝑧+𝑎2

+𝑒𝑖𝑘z,2𝑧)
+∞

0
𝑒−𝑖𝜔𝑡 (S15) 

𝐻̅3
r(𝑟̅, 𝑡) = 𝜙̂ ∫ 𝑑𝜔

+∞

−∞
∫ 𝑑𝜅⊥

𝑖𝑞

𝜔𝜀0(2𝜋)3 𝑎3(−𝜔𝜀0𝜀3)(𝑖2𝜋𝐽1(𝜅⊥𝜌))𝑒𝑖[+𝑘z,3𝑧−𝜔𝑡]+∞

0
 (S16)                                     

𝑎backward = 𝑎1|2
−,0 + 𝑎1|2

+,0 𝑅2|3𝑇2|1

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖2𝑘z,2𝑑 + 𝑎2|3
−,0 𝑇2|1

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖
𝜔

𝑣
𝑑𝑒𝑖𝑘z,2𝑑 (S17) 

𝑎2
− = 𝑎1|2

+,0 𝑅2|3

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖2𝑘z,2𝑑 + 𝑎2|3
−,0 1

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖
𝜔

𝑣
𝑑𝑒𝑖𝑘z,2𝑑 (S18) 

𝑎2
+ = 𝑎1|2

+,0 1

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 + 𝑎2|3
−,0 𝑅2|1

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖
𝜔

𝑣
𝑑𝑒𝑖𝑘z,2𝑑 (S19) 

𝑎forward = 𝑎2|3
+,0𝑒𝑖

𝜔

𝑣
𝑑𝑒−𝑖𝑘z,3𝑑 + 𝑎1|2

+,0 𝑇2|3

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖𝑘z,2𝑑𝑒−𝑖𝑘z,3𝑑 +

𝑎2|3
−,0 𝑅2|1𝑇2|3

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖
𝜔

𝑣
𝑑𝑒𝑖2𝑘z,2𝑑𝑒−𝑖𝑘z,3𝑑 (S20) 

𝑎1|2
−,0 =  

𝜅⊥
2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

[
1−

𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
−

1−
𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄
∙
𝜀1
𝜀⊥

𝜀1(1−
𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
)(1+

𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
)
] (S21) 

𝑎1|2
+,0 =  

𝜅⊥
2 𝑐2

𝜔2 ∙
+𝑣

𝑐
∙

𝜀1𝜀⊥

𝜀z

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

[
1+

𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄

𝜀1(1−
𝑣2

𝑐2𝜀1+
𝜅⊥

2 𝑣2

𝜔2 )
−

1+
𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
] (S22) 

𝑎2|3
−,0 =  

𝜅⊥
2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙

𝜀⊥𝜀3

𝜀z

1

𝜀⊥
𝑘z,3

𝜔 𝑐⁄
+𝜀3

𝑘z,2

𝜔 𝑐⁄

[
1−

𝑣

𝑐
∙
𝑘z,3

𝜔 𝑐⁄

𝜀3(1−
𝑣2

𝑐2𝜀3+
𝜅⊥

2 𝑣2

𝜔2 )
−

1−
𝑣

𝑐
∙
𝑘z,3

𝜔 𝑐⁄
∙
𝜀⊥
𝜀3

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
] (S23) 

𝑎2|3
+,0 =  

𝜅⊥
2 𝑐2

𝜔2 ∙
+𝑣

𝑐
∙ 𝜀⊥

1

𝜀⊥
𝑘z,3

𝜔 𝑐⁄
+𝜀3

𝑘𝑧,2

𝜔 𝑐⁄

[
1+

𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
−

1+
𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄
∙
𝜀3
𝜀⊥

𝜀3(1−
𝑣

𝑐
∙
𝑘z,3

𝜔 𝑐⁄
)(1+

𝑣

𝑐
∙
𝑘z,3

𝜔 𝑐⁄
)
] (S24) 

In the above equations, 𝜔 is the angular frequency, 𝑡 is the time, 𝜅⊥ = |𝜅̅⊥|, 𝜀0 is the permittivity of free 

space, and 𝐽1  is the first-order Bessel function. The vectors 𝜌̂ , 𝜙̂ , and 𝑧̂  are the unit vectors for the 

cylindrical coordinate system. 

In equation (S10), the total magnetic field 𝐻̅j(𝑟̅, 𝑡) is separated into two parts, namely 𝐻̅j

q(𝑟̅, 𝑡) and 

𝐻̅j
r(𝑟̅, 𝑡). To be specific, the charge field 𝐻̅j

q(𝑟̅, 𝑡) corresponds to the field induced by the electron’s motion 

inside a homogeneous medium; 𝐻̅j
r(𝑟̅, 𝑡) = 𝐻̅j(𝑟̅, 𝑡) − 𝐻̅𝑗

q(𝑟̅, 𝑡) is oftentimes referred to as the radiation field 
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and appears if the transition radiation occurs. 𝑅2|1  and 𝑇2|1  ( 𝑅2|3  and 𝑇2|3 ) are the reflection and 

transmission coefficients at the boundary between region 2 and region 1 (region 3), respectively. To be 

specific, we have  

𝑅2|1 =

𝑘z,2

𝜀⊥
−

𝑘z,1

𝜀1
𝑘z,2

𝜀⊥
+

𝑘z,1

𝜀1

; 𝑅2|3 =

𝑘z,2

𝜀⊥
−

𝑘z,3

𝜀3
𝑘z,2

𝜀⊥
+

𝑘z,3

𝜀3

; 𝑇2|1 =
2

𝑘z,2

𝜀⊥

𝜀z
𝜀1

𝑘z,2

𝜀⊥
+

𝑘z,1

𝜀1

; 𝑇2|3 =
2

𝑘z,2

𝜀⊥

𝜀z
𝜀3

𝑘z,2

𝜀⊥
+

𝑘z,3

𝜀3

 (S25) 

Section S2. Angular spectral energy density and radiation spectrum of transition radiation 

To quantitatively discuss the far-field radiation, below we analytically calculate the backward radiation 

energy 𝑊1 of excited propagating waves, namely the photon energy emitted into region 1. In principle, the 

backward radiation energy can be obtained by integrating the field energy density over all space in region 1 

at 𝑡 → ∞. At 𝑡 → ∞, the emitted radiation field, which is a light pulse in the time domain, is already far away 

from the interface and well separated from the charge field. If we move the coordinate origin along the 

particle trajectory into the position having the light pulse, the integration with respect to z can be performed 

from −∞ to +∞, since the field of excited propagating waves is attenuated in both directions away from the 

central position of the pulse. 

For the excited propagating waves in region 1 (namely free space in this work), the electric and magnetic 

energy densities are equal. This way, the backward radiation energy can be readily expressed as  

𝑊1 = ∫ d𝑥d𝑦 ∫ d𝑧
+∞

−∞
∙ 𝜀0𝜀1|𝐸̅1

𝑅(𝑟̅, 𝑡)|2 (S26) 

|𝐸̅1
𝑅(𝑟̅, 𝑡)|2 = ∫ 𝐸̅1|𝜅̅⊥,𝜔

𝑅 (𝑟̅, 𝑡) ∙ 𝐸̅1|𝜅̅⊥
′ ,𝜔′

𝑅 (𝑧)𝑒𝑖[(𝜅̅⊥−𝜅̅⊥
′ )∙𝑟̅⊥−(𝜔−𝜔′)𝑡] d𝜅̅⊥d𝜅̅⊥

′ d𝜔d𝜔′ (S27) 

By substituting equation (S27) into equation (S26) and performing the integration over d𝜅̅⊥
′  and d𝜔′, we 

obtain  

𝑊1 = 2 ∫ d𝜔
+∞

0
∫ 𝜀0𝜀1|𝑎1|2(

𝑞

𝜔𝜀0(2𝜋)3)2 𝜔2

𝑐𝜅⊥
2 √𝜀1√1 −

𝜅⊥
2 𝑐2

𝜔2𝜀1
(2𝜋)3d𝜅̅⊥  (S28) 

For the excited propagating waves in region 1, we have 𝜅⊥
2 < (𝜔2/𝑐2)𝜀1. As such, the integration over 

d𝜅̅⊥  in equation (S28) is operated in the range 𝜅⊥
2 < (𝜔2/𝑐2)𝜀1 . We can further express 𝜅⊥ =

(𝜔/𝑐)√𝜀1sin𝜃, by defining 𝜃 to be the angle between the wavevector of excited propagating waves and −𝑧̂ 

(+𝑧̂) for backward (forward) radiation; see Fig. 3e. Then we have 2𝜋𝜅⊥d𝜅⊥ = 2𝜋(𝜔2/𝑐2)𝜀1sin𝜃cos𝜃d𝜃. 

By substituting this relation into equation (S28), we obtain  

𝑊1 = ∫ 𝑊1(𝜔, 𝑣)
+∞

0
d𝜔 (S29) 
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𝑊1(𝜔, 𝑣) = ∫ 𝑈1(𝜔, 𝜃, 𝑣)
𝜋/2

0
∙ (2𝜋sin𝜃)d𝜃 and 𝑈1(𝜔, 𝜃, 𝑣) =

𝜀1
3/2

𝑞2cos2𝜃

4𝜋3𝜀0𝑐sin2𝜃
|𝑎backward|2 (S30) 

where 𝑊1(𝜔, 𝑣)  and 𝑈1(𝜔, 𝜃, 𝑣) =
𝜀1

3/2
𝑞2cos2𝜃

4𝜋3𝜀0𝑐sin2𝜃
|𝑎backward|2  are the radiation spectrum and the angular 

spectral energy density for the backward radiation.  

For the forward radiation, its angular spectral energy density and radiation spectrum can be obtained as 

𝑈3(𝜔, 𝜃, 𝑣) =
𝜀3

3/2
𝑞2cos2𝜃

4𝜋3𝜀0𝑐sin2𝜃
|𝑎forward|2  and 𝑊3(𝜔, 𝑣) = ∫ 𝑈3(𝜔, 𝜃, 𝑣)

𝜋/2

0
∙ (2𝜋sin𝜃)d𝜃  by following a 

similar calculation procedure.  

Then the total angular spectral energy density of transition radiation can be written as 𝑈(𝜔, 𝜃, 𝑣) =

 𝑈1(𝜔, 𝜃, 𝑣) + 𝑈3(𝜔, 𝜃, 𝑣), and the total radiation spectrum can be expressed as 𝑊(𝜔, 𝑣) =  𝑊1(𝜔, 𝑣) +

𝑊3(𝜔, 𝑣). 

More discussion on 𝑘z,1, 𝑘z,2, and 𝑘z,3 

The z-components of wavevectors of excited waves in regions 1-3 are defined as 𝑘z,1 = √𝜀1𝜔2/𝑐2 − 𝜅⊥
2, 

𝑘z,2 = √𝜀⊥𝜔2/𝑐2 − 𝜅⊥
2𝜀⊥/𝜀z , and 𝑘z,3 = √𝜀3𝜔2/𝑐2 − 𝜅⊥

2 , respectively, which are actually multi-value 

functions and should be rigorously defined during the calculation of the radiation spectra and the angular 

spectral energy densities. As background, both regions 1 & 3 are lossless vacuum with a relative permittivity 

of 𝜀1 = 𝜀3 = 1, region 2 is the uniaxial BN with a certain material loss, and this work mainly studies the 

excited waves that can freely propagate in vacuum. For these excited propagating waves in vaccum, 𝜅⊥ is a 

purely-real and positive value, and we have 0 ≤ 𝜅⊥ ≤ 𝜔/𝑐 . Accordingly, both 𝑘z,1  and 𝑘z,3  in lossless 

vacuum are also purely real and positive values. Similarly, the value of 𝐼𝑚(𝑘z,2) should be positive, for 

arbitrary 𝜀z or 𝜀⊥/𝜀z, to fulfill the radiation condition [63]. That is, 𝑘z,2 is in the first or second quadrant of 

the complex 𝑘z,2 plane for the lossy BN. In addition, the detailed discussion about the choice of the multi-

value function of 𝑘z,m  (𝑚 = 1 , 2 , or 3) has been provided in our previous work about Sommerfeld 

integration in BN-based polaritonic systems [62]; see Fig. 2 in Ref. [62].  

Section S3. Discussion on the Sommerfeld integration  

The revealed phenomenon of low-velocity-favored transition radiation is not related to the excitation of 

guided modes (e.g., BN’s phonon polaritons). While the electron’s penetration through the epsilon-near-zero 

slab may excite some guided modes, they cannot couple into free space due to the momentum mismatch. 
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Accordingly, the excited guided modes would not have an impact on the performance of the angular spectral 

energy densities and radiation spectra of excited propagating waves. 

Actually, the revealed phenomenon of low-velocity-favored transition radiation is mainly based on the 

results of angular spectral energy densities (e.g. Fig. 3a-d) and radiation spectra (e.g. Fig. 2, Fig. 4) of excited 

propagating waves, whose calculation is irrelevant to the Sommerfeld integration. The Sommerfeld 

integration is generally used to deal with the integration in the complex wavevector plane with singularity 

poles, which correspond to the existence of some guided modes (e.g. BN’s phonon polaritons). 

Correspondingly, the Sommerfeld integration is oftentimes used for the numerical calculation of field 

distribution of excited guided modes in the near field [3,5,59-61]. By contrast, our finding in this work is 

only related to the emission of propagating waves into the far field, without involving any guided modes and 

thus the Sommerfeld integration; similarly, the field plot in Fig. 3e-h also aims to show the field distribution 

of excited propagating waves in the far field. 

Section S4. Discussion on the origin of the transition radiation of Ferrell-Berreman modes   

Essentially, the underlying mechanism for the transition radiation of Ferrell-Berreman modes (also 

known as Ferrell radiation) is that the bulk plasmons provide a unique route to extend the electron-interface 

interaction time, then create light emission far beyond the formation time historically defined for free-

electron radiation, and thus help to greatly enhance the radiation intensity [4]. A detailed discussion about 

this mechanism and a historical survey of Ferrell radiation are provided in a recent work entitled “Bulk-

plasmon-mediated free-electron radiation beyond the conventional formation time” [4]. Briefly speaking, 

this bulk-plasmon-mediated free-electron radiation can occur when a fast-moving electron crosses the 

interface between free space and a plasmonic medium supporting bulk plasmons, such as metals at the 

plasma frequency. While emitted continuously from the crossing point on the interface — thus consistent 

with the features of transition radiation — the extra radiation beyond the conventional formation time is 

supported by a long tail of bulk plasmons following the electron’s trajectory deep into the plasmonic medium 

[4]. Such a plasmonic tail mixes surface and bulk effects and provides a sustained channel for electron-

interface interaction [4]. 

If the nonlocal response of epsilon-near-zero materials is considered, the Cherenkov radiation of 

longitudinal waves would also be excited when the electron moves inside the epsilon-near-zero material [4]. 

However, due to the material loss and their ultra-short wavelength, the excited longitudinal waves cannot 
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propagate over a long distance or far away from the electron trajectory and then cannot couple into free 

space. As a result, the consideration of the excited longitudinal waves and the nonlocal response of epsilon-

near-zero materials has a minor influence on the radiation spectrum or angular spectral energy density of 

excited propagating waves [4].  

Section S5. Mechanism for the low-velocity-favored transition radiation 

We show in Fig. S1 that the revealed phenomenon of low-velocity-favored transition radiation is due to 

the interference between the excited Ferrell-Berreman modes. To be specific, this revealed phenomenon 

could occur if a moving electron penetrates through an epsilon-near-zero slab, as shown in Fig. S1a-d. By 

contrast, this revealed phenomenon would disappear if the electron moves across an interface between an 

epsilon-near-zero material and free space, as shown in Fig. S1e-h. Note that the excitation of Ferrell-

Berreman modes occurs no matter the moving electron penetrates through a single interface in Fig. S1a-d or 

two parallel interfaces in Fig. S1e-h, due to the existence of epsilon-near-zero materials in both cases. This 

way, Fig. S1 indicates that the underlying mechanism for the low-velocity-favored transition radiation, 

including its plateau and dip in Figs. 2b&4b, is due to the interference of the excited Ferrell-Berreman modes, 

instead of merely the excitation of Ferrell-Berreman modes. 

 

Figure S1. Underlying mechanism for the low-velocity-favored transition radiation. For illustration, 

here we study two cases of transition radiation. In this figure, region 2 is composed of an epsilon-near-zero 

material (i.e. BN), while regions 1&3 are both free space. (a-d) Transition radiation induced by the 
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penetration of moving electrons through an epsilon-near-zero slab. (e-h) Transition radiation induced by the 

penetration of moving electrons through an interface between free space and an epsilon-near-zero material. 

The corresponding structural schematics are shown in (a, e). The radiation spectrum of backward radiation, 

namely 𝑊1(𝜔, 𝑣) = ∫ 𝑈1(𝜔, 𝜃, 𝑣)
𝜋/2

0
∙ (2𝜋sin𝜃)d𝜃, is shown in (b, f). The angular spectral energy density 

𝑈1(𝜔, 𝜃, 𝑣) of backward radiation in (c, d, g, h) is plotted at the frequency of 24.5 THz, at which we have 

𝜀𝑧 → 0. In order to illustrate the mechanism for the formation of the plateau in Fig. 2b, the y-axes in (c, g) 

are plotted on a log scale. In order to illustrate the mechanism for the formation of the dip in Fig. 2b, the y-

axes in (d, h) are plotted on a linear scale. The angular spectral energy density of backward radiation in 

region 1 is 𝑈1(𝜔, 𝜃, 𝑣) =
𝜀1

3/2
𝑞2cos2𝜃

4𝜋3𝜀0𝑐sin2𝜃
|𝑎backward|2, where the backward radiation coefficient 𝑎backward is 

schematically illustrated in (a, e). To be specific, we have 𝑎backward = 𝐴1 + 𝐴2 + 𝐴3 in (a), where 𝐴1 =

𝑎1|2
−,0 , 𝐴2 = 𝑎1|2

+,0𝑅2|3𝑇2|1/(1 − 𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑)𝑒𝑖2𝑘z,2𝑑 , 𝐴3 = 𝑎2|3
−,0𝑇2|1/(1 − 𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑)𝑒𝑖

𝜔

𝑣
𝑑𝑒𝑖𝑘z,2𝑑 ; 

𝑎1|2
−,0

 and 𝑎1|2
+,0

 are the backward and forward radiation coefficients if a moving electron penetrates through a 

single interface between region 1 and region 2; 𝑎2|3
−,0

 and 𝑎2|3
+,0

 are the backward and forward radiation 

coefficients if a moving electron penetrates through a single interface between region 2 and region 3; 𝑅2|3 

(𝑅2|1) is the reflection coefficient of TM waves between region 2 and region 3 (region 1); 𝑇2|1  is the 

transmission coefficient of TM waves between region 2 and region 1. Similarly, we have 𝑎backward = 𝑎1|2
−,0

 

in Fig. S1e. From Fig. S1a-d, the phenomenon of low-velocity-favored transition radiation occurs, if a 

moving electron penetrates through an epsilon-near-zero slab. By contrast, from Fig. S1e-h, the phenomenon 

of low-velocity-favored transition radiation disappears, if the electron moves across an interface between an 

epsilon-near-zero material and free space. For both cases of transition radiation, the Ferrell-Berreman mode 

would be excited, due to the existence of epsilon-near-zero materials. It is then reasonable to argue that the 

occurrence of the low-velocity-favored transition radiation, including its plateau and dip in Fig. 2b, is due to 

the interference of excited Ferrell-Berreman modes, instead of merely the excitation of Ferrell-Berreman 

modes.  
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Mathematical explanation for the emergence of low-velocity-favored transition radiation 

The limit of radiation spectrum 𝑊(𝜔, 𝑣) can be analytically obtained under the conditions of 𝜀z(𝜔) →

0, 𝜔𝑑/𝑐 ≪ √|𝜀z/𝜀⊥|,  and 𝜔𝑑/𝑐 ≪ 𝑣/𝑐 ≪ 1; see details below. When these conditions are fulfilled, the 

radiation spectrum becomes irrelevant to the electron velocity 𝑣 as shown in Figs. S2-S3. This exactly 

corresponds to the revealed phenomenon of low-velocity-favored transition radiation from an ultrathin 

epsilon-near-zero slab, which is featured with a plateau of largely-enhanced radiation spectrum in a certain 

range of electron velocity. Moreover, since the condition of 𝜔𝑑/𝑐 ≪ 𝑣/𝑐 ≪ 1  is sensitive to the slab 

thickness 𝑑, the velocity range within which the low-velocity-favored transition radiation could occur is also 

highly dependent on the slab thickness as shown in Fig. S2.  

We now proceed to derive the limit of radiation spectrum 𝑊(𝜔, 𝑣) . cccording to the definition of 

radiation spectrum in section S2, we have 𝑊(𝜔, 𝑣) =  ∫ 𝑈1(𝜔, 𝜃, 𝑣)
𝜋/2

0
∙ (2𝜋sin𝜃)d𝜃 + ∫ 𝑈3(𝜔, 𝜃, 𝑣)

𝜋/2

0
∙

(2𝜋sin𝜃)d𝜃, where the backward angular spectral energy density is 𝑈1(𝜔, 𝜃, 𝑣) =
𝜀1

3/2
𝑞2cos2𝜃

4𝜋3𝜀0𝑐sin2𝜃
|𝑎backward|2, 

and the forward angular spectral energy density is 𝑈3(𝜔, 𝜃, 𝑣) =
𝜀3

3/2
𝑞2cos2𝜃

4𝜋3𝜀0𝑐sin2𝜃
|𝑎forward|2 . hhat is, the 

radiation spectrum is determined by the backward radiation coefficient 𝑎backward and the forward radiation 

coefficient 𝑎forward. ho facilitate the understanding of the radiation spectrum, we firstly derive the limit of 

𝑎backward . cccording to equation (S17), we have 𝑎backward = 𝑎1|2
−,0 + 𝑎1|2

+,0 𝑅2|3𝑇2|1

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖2𝑘z,2𝑑 +

𝑎2|3
−,0 𝑇2|1

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 𝑒𝑖
𝜔

𝑣
𝑑𝑒𝑖𝑘z,2𝑑 , where 𝜀3 = 𝜀1  is used in this work, 𝑇2|1 = 2

𝑘z,2

𝜀⊥
∙

𝜀z

𝜀1
/(

𝑘z,2

𝜀⊥
+

𝑘z,1

𝜀1
)  is the 

transmission coefficient, and 𝑅2|1 = 𝑅2|3 = (
𝑘z,2

𝜀⊥
−

𝑘z,1

𝜀1
)/(

𝑘z,2

𝜀⊥
+

𝑘z,1

𝜀1
) is the reflection coefficient. If 𝑣/𝑐 ≪

1  and 𝜀z ≪ 1 , according to equations (S21-S23), we approximately have 𝑎1|2
−,0 =

𝜅⊥
2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙

𝜀⊥
1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1−
𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀𝑧

)
, 𝑎1|2

+,0 =
𝜅⊥

2 𝑐2

𝜔2 ∙
+𝑣

𝑐
∙ 𝜀⊥

𝜀1

𝜀z

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

[−
1+

𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
εz

)
] , and 𝑎2|3

−,0 =
𝜅⊥

2 𝑐2

𝜔2 ∙

−𝑣

𝑐
∙ 𝜀⊥

𝜀1

𝜀z

1

𝜀⊥
𝑘z,3

𝜔 𝑐⁄
+𝜀3

𝑘z,2

𝜔 𝑐⁄

[−
1−

𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
]. Moreover, if the condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| is fulfilled, we 

then approximately have 𝑎1|2
−,0 =  

𝜅⊥
2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙

𝜔 𝑐⁄
𝑘z,2

𝜀⊥
+

𝑘z,1

𝜀1

1

𝜀1𝜀z
; since  |𝜀z| ≪ |𝜀⊥| in this work, this expression can 
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be further simplified to 𝑎1|2
−,0 =

𝑘z,2𝑣

𝜔𝜀1
; under these additional conditions, we also have 𝑎1|2

+,0 = −𝑎2|3
−,0 = 𝑎1|2

−,0 𝜀1

𝜀z
. 

While the additional condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| is very helpful for the simplification of 𝑎1|2
−,0

, 𝑎1|2
+,0

, and 

𝑎2|3
−,0

, there is actually no necessity to use this condition for the simplification of 𝑎backward; see detailed 

derivation in below subsection entitled “Derivation of the simplified expression for 𝑎backward in equation 

(S31) without the assumption of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥|”. In short, after some calculations without the assumption 

of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥|, the backward radiation coefficient can be further approximately reduced to  

𝑎backward = 𝑖𝜅⊥
2 ∙

1
2𝑘z,1

𝜀1
−

𝑖𝑘z,2∙𝑑𝑘z,2

𝜀⊥

𝑑

𝜀1𝜀z
=

1

𝜀1−2𝑖
𝑘z,1

𝑘⊥
∙

𝜀z
𝑘⊥𝑑

 (S31) 

Similarly, under the conditions of 𝜀z(𝜔) → 0, 𝜔𝑑/𝑐 ≪ √|𝜀z/𝜀⊥|, and 𝜔𝑑/𝑐 ≪ 𝑣/𝑐 ≪ 1, the forward 

radiation coefficient can be approximately reduced to  

𝑎forward = 𝑖𝜅⊥
2 ∙

1
2𝑘z,1

𝜀1
−

𝑖𝑘z,2∙𝑑𝑘z,2

𝜀⊥

𝑑

𝜀1𝜀z
=

1

𝜀1−2𝑖
𝑘z,1

𝑘⊥
∙

𝜀z
𝑘⊥𝑑

 (S32) 

Since both the backward and forward radiation coefficients in equations (S31-S32) are independent of 

the electron velocity and almost linearly proportional to 1/𝜀z, the radiation spectrum 𝑊(𝜔, 𝑣) is then also 

irrelevant to the electron velocity and almost linearly proportional to 1/|𝜀z|2. We show in Figs. S2-S3 that 

the radiation spectra with and without the above approximation match well within the range of 𝜔𝑑/𝑐 ≪

𝑣/𝑐 ≪ 1 , if 𝜀z(𝜔) → 0  and 𝜔𝑑/𝑐 ≪ √|𝜀z/𝜀⊥| . hherefore, if the conditions of 𝜀z(𝜔) → 0 , 𝜔𝑑/𝑐 ≪

√|𝜀z/𝜀⊥|, and 𝜔𝑑/𝑐 ≪ 𝑣/𝑐 ≪ 1 are fulfilled, the revealed phenomenon of low-velocity-favored transition 

radiation could occur.  

     In addition, we note that the Ferrell radiation (or one specific peak observed in the transition-radiation 

spectrum) is closely related to the reflection coefficient, as pointed out by Economou in 1969 [Phys. Rev. 

182, 539 (1969)]. While our revealed phenomenon of low-velocity-favored transition radiation is related to 

the Ferrell radiation, its origin is not determined by the reflection coefficient. This can be seen from equations 

(S31-S32), in which the backward and forward radiation coefficients are not relevant to the reflection 

coefficient. Actually, the reflection coefficient itself is a physical parameter which is dependent on the 

frequency and the incident angle but not related to the electron velocity, and it thus cannot explain the 

dependence of our revealed phenomenon on the electron velocity.  
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Figure S2. Influence of the slab thickness 𝒅 on the low-velocity-favored transition radiation. For 

illustration, the epsilon-near-zero slab here is set to have a relative permittivity of [𝜀⊥, 𝜀⊥, 𝜀z] =

[7.7, 7.7, −0.05] and a thickness of 1 nm, 3 nm, or 9 nm. hhe other structural setup is the same as Fig. 2. (a) 

Radiation spectrum 𝑊(𝜔0) of the excited propagating waves as a function of the electron velocity 𝑣 at the 

frequency of 𝜔0/2𝜋 = 24.5  hHz for various slab thicknesses. hhe solid lines are plotted by using the 

backward radiation coefficients 𝑎backward and 𝑎forward without any approximation, while the dashed lines 

are plotted by using 𝑎backward in equation (S31) and 𝑎forward in equation (S32) with some approximations 

(i.e., under the assumption of 𝜀z → 0, 𝜔𝑑/𝑐 ≪ √|𝜀z/𝜀⊥| and 𝜔𝑑/𝑐 ≪ 𝑣/𝑐 ≪ 1). When the slab thickness 

increases, the velocity range that possesses the phenomenon of low-velocity-favored transition radiation 

would become narrower. (b) Dependence of 𝑊(𝜔0) on the slab thickness when 𝑣 = 𝑣A, as extracted from 

(a). (c) Dependence of 𝑣A (solid line) and 𝑣B (dashed line) on the slab thickness, as extracted from (a). The 

value of 𝑣A would increase if the slab thickness increases, while the value of 𝑣B is relatively insensitive to 

the variation of the slab thickness. 
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Figure S3. Influence of 𝜺𝐳 on the low-velocity-favored transition radiation. For illustration, the epsilon-

near-zero slab here is set to have a thickness of 1 nm and a relative permittivity of [𝜀⊥, 𝜀⊥, 𝜀z] = [7.7, 7.7, 𝜀z], 

where 𝜀z is equal to −0.001, −0.01, −0.03, or −0.05 in this figure. hhe other structural setup is the same 

as Fig. S2. (a) Radiation spectrum 𝑊(𝜔0) of the excited propagating waves as a function of the electron 

velocity 𝑣 at the frequency of 𝜔0/2𝜋 = 24.5 hHz for various values of 𝜀z. hhe solid lines are plotted by 

using the backward radiation coefficients 𝑎backward  and 𝑎forward  without any approximation, while the 

dashed lines are plotted by using 𝑎backward in equation (S31) and 𝑎forward in equation (S32) with some 

approximations (i.e., under the assumption of 𝜀z → 0, 𝜔𝑑/𝑐 ≪ √|𝜀z/𝜀⊥| and 𝜔𝑑/𝑐 ≪ 𝑣/𝑐 ≪ 1 ). For 

comparison, the position of 𝑣/𝑐 = √|𝜀z/𝜀⊥| is denoted by the cross marker for each line. (b) Dependence 

of 𝑊(𝜔0) on the slab thickness when 𝑣 = 𝑣A, as extracted from (a). (c) Dependence of 𝑣A (solid line) and 

𝑣B (dashed line) on −𝜀z, as extracted from (a). For illustration, the value of 𝑊(𝜔0) at 𝑣 = 𝑣A or 𝑣 = 𝑣B is 

defined to be 90% of the maximum within the range of 𝑣 ∈ [𝑣A, 𝑣B]. Both of the values of 𝑣A and 𝑣B are 

relatively insensitive to the variation of |𝜀z|. 

 

Derivation of the simplified expression for 𝑎backward in equation (S31) without the assumption of 𝑣2/𝑐2 ≪

|𝜀z/𝜀⊥| 

Despite the condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| is helpful for the simplification of the factor 1 −
𝑣2

𝑐2 𝜀⊥ +
𝜅⊥

2 𝑣2

𝜔2

𝜀⊥

𝜀z
 

in all 𝑎1|2
+,0

, 𝑎1|2
−,0

 and 𝑎2|3
−,0

, there is actually no necessity to assume this condition for the simplification of 
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𝑎backward. The underlying reason is that 𝑎backward in equation (S17) is a summation related to 𝑎1|2
+,0

, 𝑎1|2
−,0

 

and 𝑎2|3
−,0

, and the key factor 1 −
𝑣2

𝑐2 𝜀⊥ +
𝜅⊥

2 𝑣2

𝜔2

𝜀⊥

𝜀z
 in all 𝑎1|2

+,0
, 𝑎1|2

−,0
 and 𝑎2|3

−,0
 could be cancelled out 

automatically during their summation without the assumption of the mentioned condition of 𝑣2/𝑐2 ≪

|𝜀z/𝜀⊥|; see detailed derivation below. That is, the condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| is not a necessary condition 

to achieve the simplified expression for 𝑎backward in our equation (S31), and it thus could not define the 

position of point B in all related figures (e.g. Figs. S2-S3). This happens even when we consider the case of 

𝜀z = −0.001 in Fig. S3. From Fig. S3, on the one hand, the value of 𝑣/𝑐 = √|𝜀z/𝜀⊥| is much smaller than 

𝑣/𝑐 = 𝑣B/𝑐; on the other hand, while the value of 𝑣/𝑐 = √|𝜀z/𝜀⊥| is sensitive to the variation of 𝜀z, the 

value of 𝑣B/𝑐 (namely the position of point B) is relatively insensitive to the variation of 𝜀z. 

Below we provide the detailed derivation of the simplified expression for 𝑎backward  in equation (S31) 

without the assumption of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥|. 

For the ultrathin epsilon-near-zero slab considered in this work, if |𝜀z| ≪ 1 and 𝜔𝑑/𝑐 ≪ √|𝜀z/𝜀⊥|, we 

approximately have |𝑘𝑧,2𝑑| = |√
𝜔2

𝑐2 𝜀⊥ − 𝜅⊥
2 𝜀⊥

𝜀z

| 𝑑 = |𝑖𝜅⊥√
𝜀⊥

𝜀z
| 𝑑 < |

𝜔

𝑐
√

𝜀⊥

𝜀z
|𝑑 ≪ 1 and 𝑒𝑖𝑘𝑧,2𝑑 = 1 + 𝑖𝑘z,2𝑑. 

Since the considered structure is also symmetric (i.e. 𝜀1 = 𝜀3 ), we further have 
𝑇2|1𝑒𝑖𝑘z,2𝑑

1−𝑅2|3𝑅2|1𝑒𝑖2𝑘z,2𝑑 =

𝑇2|1𝑒𝑖𝑘z,2𝑑

(1−𝑅2|1𝑒𝑖𝑘z,2𝑑)(1+𝑅2|1𝑒𝑖𝑘z,2𝑑)
=

𝑇2|1

(1−𝑅2|1𝑒𝑖𝑘z,2𝑑)(1+𝑅2|1)
=

𝜀z/𝜀1

1−𝑅2|1𝑒𝑖𝑘z,2𝑑 . Then the expression of 𝑎backward  in 

equation (S17) can be re-organized into  

𝑎backward = 𝑎1|2
−,0 + 𝑎1|2

+,0 𝜀z/𝜀1

1−𝑅2|1𝑒𝑖𝑘z,2𝑑 𝑅2|3𝑒𝑖𝑘z,2𝑑 + 𝑎2|3
−,0 𝜀z/𝜀1

1−𝑅2|1𝑒𝑖𝑘z,2𝑑 𝑒𝑖
𝜔

𝑣
𝑑

 (S33) 

If 𝑣/𝑐 ≪ 1 and |𝜀z| ≪ 1, we have |
1−

𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)

| ≫ |
1−

𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄
∙
𝜀1
𝜀⊥

𝜀1(1−
𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
)(1+

𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
)

|. By using this fact for the 

simplification of 𝑎1|2
−,0

, 𝑎1|2
+,0

 and 𝑎2|3
−,0

 in equations (S21-S23), we approximately have  

𝑎1|2
−,0 =

𝜅⊥
2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1−
𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
 (S34) 

𝑎1|2
+,0 =

𝜅⊥
2 𝑐2

𝜔2 ∙
+𝑣

𝑐
∙ 𝜀⊥

𝜀1

𝜀z

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

[−
1+

𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
] (S35) 
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𝑎2|3
−,0 =

𝜅⊥
2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

𝜀1

𝜀z

1

𝜀⊥
𝑘z,3

𝜔 𝑐⁄
+𝜀3

𝑘z,2

𝜔 𝑐⁄

[−
1−

𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
] (S36) 

In equations (S34-S36), each equation has a same factor 1 −
𝑣2

𝑐2 𝜀⊥ +
𝜅⊥

2 𝑣2

𝜔2

𝜀⊥

𝜀z
. This factor can be further 

simplified if the condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| is satisfied, and we have 1 −
𝑣2

𝑐2 𝜀⊥ +
𝜅⊥

2 𝑣2

𝜔2

𝜀⊥

𝜀z
→ 1. In other 

words, the usage of the condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| is beneficial for the further simplification of 𝑎1|2
−,0

, 𝑎1|2
+,0

 

and 𝑎2|3
−,0

 in equations (S34-S36). However, we emphasize that the condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| is not 

necessary for the simplification of 𝑎backward in equation (S33). Below, we proceed with the simplification 

of 𝑎backward without the assumption of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥|.   

By substituting equation (S34-S36) directly into equation (S33), we have 

𝑎backward =
𝜅⊥

2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1−
𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
+  

𝜅⊥
2 𝑐2

𝜔2 ∙
+𝑣

𝑐
∙

𝜀⊥
−1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1+
𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)

𝑅2|3𝑒𝑖𝑘z,2𝑑

1−𝑅2|1𝑒𝑖𝑘z,2𝑑 +
𝜅⊥

2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

−1

𝜀⊥
𝑘z,3

𝜔 𝑐⁄
+𝜀3

𝑘z,2

𝜔 𝑐⁄

1−
𝑣

𝑐
∙
𝑘z,3

𝜔 𝑐⁄
∙
𝜀⊥
𝜀3

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)

𝑒
𝑖
𝜔
𝑣 𝑑

1−𝑅2|1𝑒𝑖𝑘z,2𝑑  

=
𝜅⊥

2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)
(1 −

𝑣

𝑐
∙

𝑘z,2

𝜔 𝑐⁄
+

𝑅2|3𝑒𝑖𝑘z,2𝑑(1+
𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

)−𝑒
𝑖
𝜔
𝑣 𝑑

(1−
𝑣

𝑐
∙
𝑘z,1

𝜔 𝑐⁄
∙
𝜀⊥
𝜀1

)

1−𝑅2|1𝑒𝑖𝑘z,2𝑑 ) (S37) 

As background, we have 𝑅2|3 =

𝑘z,2

𝜀⊥
−

𝑘z,1

𝜀1
𝑘z,2

𝜀⊥
+

𝑘z,1

𝜀1

= 1 − 2
𝑘z,1𝜀⊥

𝜀1𝑘z,2
 in equation (S37), and the factor 2

𝑘z,1𝜀⊥

𝜀1𝑘z,2
=

2
𝑘z,1𝜀⊥

𝜀1√
𝜔2

𝑐2 𝜀⊥−𝜅⊥
2 𝜀⊥

𝜀z

= 2
𝑘z,1𝜀⊥

𝜀1𝑖𝜅⊥√
𝜀⊥
𝜀z

= 2
𝑘z,1√𝜀⊥

𝑖𝜀1𝜅⊥
√𝜀z could be a small quantity if |𝜀z| ≪ 1. By only keeping the small 

quantities up to the first order, then the term 1 − 𝑅2|1𝑒𝑖𝑘z,2𝑑  in equation (S37) can be approximately 

simplified to  

1 − 𝑅2|1𝑒𝑖𝑘z,2𝑑 = 1 − (1 − 2
𝑘z,1𝜀⊥

𝜀1𝑘z,2
) (1 + 𝑖𝑘z,2𝑑) = 2

𝑘z,1𝜀⊥

𝜀1𝑘z,2
− 𝑖𝑘z,2𝑑     (S38) 

If 
𝜔

𝑣
𝑑 ≪ 1 (i.e., 

𝑣

𝑐
≫

𝜔

𝑐
𝑑), we further approximately have 𝑒𝑖

𝜔

𝑣
𝑑 = 1 + 𝑖

𝜔

𝑣
𝑑. By only keeping the small 

quantities up to the first order, then the term 𝑅2|3𝑒𝑖𝑘z,2𝑑 (1 +
𝑣

𝑐
∙

𝑘z,1

𝜔 𝑐⁄
∙

𝜀⊥

𝜀1
) − 𝑒𝑖

𝜔

𝑣
𝑑 (1 −

𝑣

𝑐
∙

𝑘z,1

𝜔 𝑐⁄
∙

𝜀⊥

𝜀1
)  in 

equation (S37) can be approximately simplified to 
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𝑅2|3𝑒𝑖𝑘z,2𝑑 (1 +
𝑣

𝑐
∙

𝑘z,1

𝜔 𝑐⁄
∙

𝜀⊥

𝜀1
) − 𝑒𝑖

𝜔

𝑣
𝑑 (1 −

𝑣

𝑐
∙

𝑘z,1

𝜔 𝑐⁄
∙

𝜀⊥

𝜀1
)  

= (1 − 2
𝑘z,1𝜀⊥

𝜀1𝑘z,2
) (1 + 𝑖𝑘z,2𝑑) (1 +

𝑣

𝑐
∙

𝑘z,1

𝜔 𝑐⁄
∙

𝜀⊥

𝜀1
) − (1 + 𝑖

𝜔

𝑣
𝑑) (1 −

𝑣

𝑐
∙

𝑘z,1

𝜔 𝑐⁄
∙

𝜀⊥

𝜀1
)  

= −2
𝑘z,1

𝑘z,2
∙

𝜀⊥

𝜀1
(1 −

𝑣

𝑐
∙

𝑘z,2

𝜔 𝑐⁄
) − 𝑖

𝜔

𝑣
𝑑 + 𝑖𝑘z,2𝑑 (S39) 

By substituting equations (S38-S39) into equation (S37), we have 

𝑎backward =
𝜅⊥

2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)

(1 −
𝑣

𝑐
∙

𝑘z,2

𝜔 𝑐⁄
+

−2
𝑘z,1

𝑘z,2
∙
𝜀⊥
𝜀1

(1−
𝑣

𝑐
∙
𝑘z,2

𝜔 𝑐⁄
)−𝑖

𝜔

𝑣
𝑑+𝑖kz,2𝑑

2
𝑘𝑧,1𝜀⊥
𝜀1𝑘𝑧,2

−𝑖𝑘z,2𝑑
)  

=
𝜅⊥

2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)

−𝑖
𝜔

𝑣
𝑑(1−(

𝑣

𝜔
𝑘z,2)2)

2
𝑘z,1𝜀⊥
𝜀1𝑘z,2

−𝑖𝑘z,2𝑑
  

=
𝜅⊥

2 𝑐2

𝜔2 ∙
−𝑣

𝑐
∙ 𝜀⊥

1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1

𝜀z(1−
𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)

−𝑖
𝜔

𝑣
𝑑(1−

𝑣2

𝑐2𝜀⊥+
𝜅⊥

2 𝑣2

𝜔2
𝜀⊥
𝜀z

)

2
𝑘z,1𝜀⊥
𝜀1𝑘z,2

−𝑖𝑘z,2𝑑
  

=
𝜅⊥

2 𝑐2

𝜔2 ∙ 𝜀⊥
1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

1

𝜀z

𝑖
𝜔

𝑐
𝑑

2
𝑘z,1𝜀⊥
𝜀1𝑘z,2

−𝑖𝑘z,2𝑑
 (S40) 

Since |𝜀z| ≪ |𝜀⊥| in this work, we approximately have |𝑘z,2| = |𝑖𝜅⊥√
𝜀⊥

𝜀z

| ≫ |𝑘z,1| and then 
1

𝜀1
𝑘z,2

𝜔 𝑐⁄
+𝜀⊥

𝑘z,1

𝜔 𝑐⁄

=

1

𝜀1
𝑘z,2

𝜔 𝑐⁄

. This way, equation (S40) can be further simplified to   

𝑎backward = 𝑖𝜅⊥
2 ∙

1
2𝑘z,1

𝜀1
−

𝑖𝑘z,2∙𝑑𝑘z,2

𝜀⊥

𝑑

𝜀1𝜀z
=

1

𝜀1−2𝑖
𝑘z,1

𝑘⊥
∙

𝜀z
𝑘⊥𝑑

 (S41) 

Note that equation (S41) is exactly the simplified expression for 𝑎backward in equation (S31). By following 

a similar calculation procedure, the simplified expression for 𝑎forward in equation (S32) can also be derived 

without the assumption of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥|. 

According to the above derivation, the necessary conditions to obtain the simplified expression for 𝑎backward 

in equation (S31) are |𝜀z| → 0, 𝜔𝑑/𝑐 ≪ √|𝜀z/𝜀⊥| and 𝜔𝑑/𝑐 ≪ 𝑣/𝑐 ≪ 1, and there is actually no need to 

consider the additional condition of 𝑣2/𝑐2 ≪ |𝜀z/𝜀⊥| . The underlying reason is that the factor 

(1 −
𝑣2

𝑐2 𝜀⊥ +
𝜅⊥

2 𝑣2

𝜔2

𝜀⊥

𝜀z
) in all 𝑎1|2

−,0
, 𝑎1|2

+,0
 and 𝑎2|3

−,0
 in equations (S34-S36) can be cancelled out automatically 
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when considering the summation in equation (S33). 

Section S6. Relative permittivity of hexagonal BN 

    In this work, hexagonal BN is chosen as the uniaxial material with a relative permittivity of [𝜀⊥, 𝜀⊥, 𝜀𝑧]. 

From previous works [54-60], the relative permittivity of BN can be expressed as 

𝜀⊥(𝜔) = 𝜀⊥(∞) + 𝑠𝜈,⊥
𝜔𝜈,⊥

2

𝜔𝜈,⊥
2 −𝑖𝛾𝜈,⊥𝜔−𝜔2 (S42) 

𝜀𝑧(𝜔) = 𝜀𝑧(∞) + 𝑠𝜈,𝑧
𝜔𝜈,𝑧

2

𝜔𝜈,𝑧
2 −𝑖𝛾𝜈,𝑧𝜔−𝜔2 (S43) 

where 𝜀⊥(∞) = 4.87, 𝜀𝑧(∞) = 2.95; 𝑠𝜈,⊥ = 1.83 and 𝑠𝜈,z = 0.61 are the dimensionless coupling factors; 

ℏ𝜔𝜈,⊥ = 170.1 meV and ℏ𝜔𝜈,z = 92.5 meV are the normal frequencies of vibration [54-60]; ℏ𝛾𝜈,⊥ = 0.87 

meV and ℏ𝛾𝜈,z = 0.25 meV are the amplitude decay rates. 

 

Figure S4. Relative permittivity of hexagonal BN. These curves are calculated according to equations 

(S42-S43). 

 

The BN has two reststrahlen bands. To be specific, the first reststrahlen band of BN is within the range 

of 22.7-24.8 THz, in which the BN shows the optical response of type I hyperbolic materials; the second 

reststrahlen band of BN is within the range of 41.1-48.4 THz, in which the BN behaves like a type II 

hyperbolic material. Fig. S4 shows the relative permittivity of BN as a function of the frequency. At three 

representative frequencies studied in the main text, we have 𝜀⊥ =  7.7 + 0.01𝑖 and 𝜀𝑧 =  −0.05 + 0.04𝑖 at 
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24.5 THz (within the first reststrahlen band), 𝜀⊥ = −34.8 + 4.6𝑖 and 𝜀𝑧 = 2.7 + 0.0005𝑖 at 42 THz (within 

the second reststrahlen band), and 𝜀⊥ = 11.6 + 0.1𝑖 and 𝜀𝑧 = 2.5 + 0.001𝑖 at 35 THz (outside these two 

reststrahlen bands). In addition, we have 𝜀⊥ → 0 near 48.2 THz (namely 𝜀⊥ =  0.02 +  0.08𝑖 and 𝜀z =

2.8 +  0.0003𝑖). 

Section S7. Low-velocity-favored transition radiation from epsilon-near-zero materials with and 

without the existence of high-𝒌 modes 

In this section, we show in Fig. S5 that the revealed phenomenon of low-velocity-favored transition 

radiation can also occur from an isotropic epsilon-near-zero material (e.g. 𝜀⊥ = 𝜀z = 0.05 in Fig. S5a&d) 

and from a uniaxial epsilon-near-zero material with an elliptical isofrequency contour (e.g. 𝜀⊥ = 7.7 and 

𝜀z = 0.05 in Fig. S5b&e) without the existence of the mentioned high-k modes, in addition to that from a 

hyperbolic epsilon-near-zero material (e.g. 𝜀⊥ = 7.7 and 𝜀z = −0.05 in Fig. S5c&f) with the existence of 

the mentioned high-k modes. hhis way, Fig. S5 indicates that the occurrence of low-velocity-favored 

transition radiation does not necessarily require the existence of high-k modes in epsilon-near-zero materials 

but is dependent on the value of |𝜀z|. hhe underlying reason is that our revealed phenomenon in Fig. S5 is 

not caused by Cherenkov radiation of high-k modes (see more in Fig. S9) but related to the bulk-plasmon-

mediated free-electron radiation beyond the conventional formation time as revealed in Ref. [4].    

 
Figure S5. Low-velocity-favored transition radiation from various epsilon-near-zero materials with 

and without the existence of high-k modes. hhe structural setup is the same as Fig. 2 (e.g. the frequency 
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is 24.5 hHz and the slab thickness is 1 nm), except for the relative permittivity [𝜀⊥, 𝜀⊥, 𝜀z] of epsilon-near-

zero materials. (a-c) Isofrequency contour of eigenmodes inside the epsilon-near-zero material. For 

illustration, the material loss is neglected in this figure, and we set 𝜀⊥ = 𝜀z = 0.05 in (a), 𝜀⊥ = 7.7 & 𝜀z =

0.05  in (b), and 𝜀⊥ = 7.7  & 𝜀z = −0.05  in (c). cccordingly, the high-k modes do not exist in (a,b) and 

appear only in (c). (d-f) Radiation spectrum of transition radiation from the corresponding three types of 

epsilon-near-zero materials in (a-c). hhe phenomenon of low-velocity-favored transition radiation appears 

in all three cases studied in (d-f), as long as |𝜀z| → 0. hhis way, the occurrence of low-velocity-favored 

transition radiation does not necessarily require the existence of high-k modes in epsilon-near-zero materials.  

 

Section S8. More discussion on Fig. 3 at 35 THz 

    This section serves as the supplementary information for Fig. 3. Fig. S6a shows the angular spectral 

energy density at 35 THz. Fig. S6b-c show the field distributions of the excited waves at the frequency of 35 

THz without 𝜀z → 0. The radiation performance at 35 THz in Fig. S6 is similar to that at 42 THz without 

𝜀z → 0 as shown in Fig. 3d-f. For example, the strength of the excited field with 𝑣/𝑐 = 0.001 in Fig. S6b is 

much weaker than that with 𝑣/𝑐 = 0.999 in Fig. S6c. 

 

Figure S6. Angular spectral energy density and distribution of the excited magnetic field 𝑯𝝓
𝐫  at 

different electron velocities at 35 THz. The other structural setup is the same as that in Fig. 3.  
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Section S9. Influence of the BN thickness on the low-velocity-favored transition radiation. 

Due to these exotic features of transition radiation at 24.5 THz with 𝜀z → 0, below we discuss the 

radiation performance at 𝜔0/2𝜋 =24.5 THz by investigating the influence of the slab thickness on the low-

velocity-favored transition radiation in Fig. S7. Fig. S7a shows the total energy spectrum 𝑊(𝜔0) as a 

function of the particle velocity by varying the slab thickness 𝑑 = 𝑑𝑗 (𝑗 = 1, 2, or 3), namely from 𝑑1 = 1 

nm, 𝑑2 = 10 nm to 𝑑3 = 100 nm. For these three cases, the dependences of 𝑊(𝜔0) on the electron velocity 

are similar in Fig. S7a. Particularly, 𝑊(𝜔0) in Fig. S7a is insensitive to the variation of 𝑣, if 𝑣 ∈ [𝑣A1
, 𝑣B1

] 

under the case of 𝑑1, if 𝑣 ∈ [𝑣A2
, 𝑣B2

] under the case of 𝑑2, and if 𝑣 ∈ [𝑣A3
, 𝑣B3

] under the case of 𝑑2, where 

𝑣A1
/𝑐 = 4.5 × 10−4 , 𝑣A2

/𝑐 = 4.5 × 10−3 , 𝑣A3
/𝑐 = 3.7 × 10−2 , 𝑣B1

/𝑐 = 0.26, 𝑣B2
/𝑐 = 0.27, and 𝑣B3

/

𝑐 = 0.36. This information is briefly summarized in Fig. S7b, where the value of 𝑣A𝑗
 almost linearly 

increases with 𝑑𝑗. Moreover, Fig. S7a shows that the value of 𝑊(𝜔0) with 𝑣 ∈ [𝑣A𝑗
, 𝑣B𝑗

] is the same as that 

with 𝑣 = 𝑣D𝑗
. By contrast, 𝑣D𝑗

 is almost independent on 𝑑𝑗, as shown in Fig. S7b.  

 

Figure S7. Influence of the BN thickness on the low-velocity-favored transition radiation. In this figure, 

the thickness 𝑑 = 𝑑𝑗 (𝑗 = 1, 2 or 3) of the BN slab varies from 𝑑1 = 1 nm, 𝑑2 = 10 nm, to 𝑑3 = 100 nm. 

The other structural setup is the same as that in Fig. 2. The working frequency is 𝜔0/2𝜋 = 24.5 THz. (a) 

Radiation spectrum 𝑊(𝜔0) of the excited propagating waves as a function of the electron velocity 𝑣 at 

different thicknesses of the BN slab. The points of A𝑗 and D𝑗 have the same value of 𝑊(𝜔0). (b) Extracted 

electron velocity 𝑣 at the points of A𝑗  and D𝑗  in (a) as a function of 𝑑𝑗 . (c) Extracted photon extraction 
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efficiency 𝜂(𝜔0) at the points of A𝑗 and D𝑗 in (a) as a function of 𝑑𝑗. This figure serves as the supplementary 

information for Fig. 2b. 

 

Fig. S7a also shows that 𝑊(𝜔0)  tends to increase with the slab thickness. To be specific, if 𝑣 ∈

[𝑣A𝑗
, 𝑣B𝑗

], the value of 𝑊(𝜔0) with 𝑑3 = 100 nm is almost two (four) orders of magnitude higher than that 

with 𝑑2 = 10 nm (𝑑1 = 1 nm). We then plot the photon extraction efficiency at points of A𝑗 and D𝑗 in Fig. 

S8c. From Fig. S7c, the value of 𝜂(𝜔0)  at points A𝑗  is insensitive to the variation of 𝑑𝑗 , due to the 

simultaneous increase of 𝑣A𝑗
 and 𝑊(𝜔0) with 𝑑𝑗 in Fig. S7a&b. By contrast, the value of 𝜂(𝜔0) at points 

D𝑗  linearly increases with 𝑑𝑗 , since 𝑣D𝑗
 is insensitive to 𝑑𝑗  but 𝑊(𝜔0) at points D𝑗  increases with 𝑑𝑗 . In 

addition, Fig. S7a shows that the curve of 𝑊(𝜔0) would oscillate with 𝑣, when 𝑣/𝑐 < 10−3 under the case 

of 𝑑2, or when 𝑣/𝑐 < 10−2 under the case of 𝑑3. This oscillation is due to the interference of transition 

radiation from the upper and lower boundaries of BN.  

Section S10. Size of a hole through the BN slab 

When a slow electron moves with a velocity 𝑣̅ = 𝑧̂𝑣 in free space, the wavevector of its carried 

evanescent waves at the frequency with 𝜀z → 0 can be expressed as 𝑘̅0 = 𝜌̂𝑘ρ + 𝑧̂𝑘z, where 𝑘z = 𝜔0/𝑣 

due to the momentum match between the moving electron and the induced waves, |𝑘̅0| = 𝑘0 = 𝜔0/𝑐, 

and 𝜔0/2𝜋 = 24.5 THz in this work. Mathematically, we have 𝑘ρ = √𝑘0
2 − 𝑘z

2 = 𝑖𝑘0√1/𝛽2 − 1 , 

where 𝛽 = 𝑣/𝑐; and we approximately have 𝑘ρ = 𝑖𝑘0/𝛽 for slow electrons with 𝛽 ≪ 1. Since 𝑘ρ is a 

purely imaginary number, this indicates that the induced evanescent waves would decay with a factor 

of 𝑒𝑖𝑘ρ𝜌 along the 𝜌 direction. To enable sufficient interaction between the BN slab and the evanescent 

waves carried by slow electrons, the diameter 𝑑hole of the hole through the BN slab should be small 

enough, for example, 𝜌hole ≤ 1/|𝑘ρ| = 𝛽/𝑘0 = 𝛽𝜆0/(2𝜋), where 𝜆0 = 2𝜋𝑐/𝜔0 = 12 μm. That is, it 

is better to let 𝑑hole ≤ 20 nm if 𝛽 = 0.01 and 𝑑hole ≤ 200 nm if 𝛽 = 0.1.  

Section S11. Transition radiation from the BN slab near 48.2 THz 

From Fig. S4, we also have |𝜀⊥| → 0 near 48.2 THz. To be specific, we have 𝜀⊥ =  0.02 + 0.08𝑖 and 

𝜀z =  2.8 + 0.0003𝑖 at 48.2 THz. We then plot in Fig. S8 the radiation spectrum as a function of the electron 
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velocity at 48.2 THz. Fig. S8 shows that when 𝑣 ∈ [𝑣A, 𝑣B], the radiation intensity 𝑊(𝜔0) at 24.5 THz with 

|𝜀z| → 0 is almost two orders of magnitude larger than that at 48.2 THz with |𝜀⊥| → 0, where 𝑣A/𝑐 = 0.4 ×

10−3 and 𝑣B/𝑐 = 0.29. Besides, compared with 35 THz and 42 THz, the radiation intensity 𝑊(𝜔0) at 48.2 

THz does not show obvious enhancement. Therefore, we conclude that the phenomenon of low-velocity-

favored transition radiation cannot occur near the frequency with |𝜀⊥| → 0 as shown in Fig. S8 but can only 

occur near the frequency with |𝜀z| → 0 as shown in Fig. 4b. 

 

Figure S8. Low-velocity-favored transition radiation from the BN slab at 48.2 THz. The other structural 

setup is the same as that in Fig. 2b. This figure serves as the supporting information for Fig. 2b. 

 

Section S12. Some discussion on the Cherenkov radiation 

This work is analytically calculated within the framework of macroscopic Maxwell’s equations and has 

already considered the Cherenkov radiation, including Fig. S7. We show in Fig. S9 that the contribution of 

Cherenkov radiation can be safely neglected in the whole excited propagating waves, due to the relatively-

thin thickness of BN (e.g. 1-100 nm in Fig. S7) considered in this work.  
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Figure S9. Some discussion on the Cherenkov radiation. (a) Dispersion of eigenmodes supported in a 

homogeneous infinitely-large BN at 24.5 THz, which has 𝜀⊥ =  7.7 + 0.01𝑖 and 𝜀z =  −0.05 + 0.04𝑖 . 

Under this scenario, the iso-frequency contour is hyperbolic. Accordingly, if the electron moves along the z 

direction, the creation of Cherenkov radiation requires that 𝑣 ≤ 𝑐/√𝑅𝑒(𝜀⊥) = 0.36𝑐. On the other hand, the 

excited Cherenkov radiation should have 𝑘ρ/𝑘0 ≤ 1 so that it can be safely coupled out into free space 

without total internal reflection at the interface between BN and free space. This way, this condition further 

requires 𝑣 ≥ 0.08𝑐. For clarity, the velocity regime with 0.08𝑐 ≤ 𝑣 ≤ 0.36𝑐 has been highlighted with a 

green region. (b) Radiation spectrum of the Cherenkov radiation and the totally-excited propagating waves 

as a function of the electron velocity. For illustration, the thickness of BN is 𝑑BN = 10 nm in this figure. 

According to the Frank-Tamm formula for Cherenkov radiation, the radiation spectrum of Cherenkov 

radiation created inside the BN slab can be described by 𝑊(𝜔) =
𝑞2𝑑BN𝜇0

4𝜋
𝜔 (1 −

𝑐2

𝑣2𝑛eff
2 ) [29], where the 

effective index is 𝑛eff = √𝜀z + (1 −
𝜀z

𝜀⊥
)(

𝑐

𝑣
)2  [29]. Within the highlighted green region, the intensity of 

excited Cherenkov radiation is two orders of magnitude smaller than that of the totally-excited propagating 

waves, due to the relatively-thin thickness of BN considered in this work. This way, the contribution of 

Cherenkov radiation in this work can be safely neglected.  

 

Section S13. Influence of the material loss on the low-velocity-favored transition radiation 

The material loss would have a certain impact on the transition radiation. We show in Fig. S10 that under 

the existence of a reasonably-large material loss, the phenomenon of low-velocity-favored transition 
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radiation could exist. In addition, when the loss increases, the corresponding value of radiation spectrum 

𝑊(𝜔) (e.g. within the velocity range of 𝑣 ∈ [𝑣A, 𝑣B]) would decrease in Fig. S10. 

 

 Figure S10. Influence of the material loss on the phenomenon of low-velocity-favored transition 

radiation. hhis figure serves as the complementary information for Fig. 4b. hhe structural setup is the same 

as Fig. 4b, except for the value of 𝜀z. cs background, when considering the material loss of BN, we have 

𝜀z = −0.05 + 0.04𝑖  and 𝜀⊥ = 7.7 + 0.01𝑖  at the frequency of 𝜔0/2𝜋 = 24.5  hHz. When the value of 

𝐼𝑚(𝜀z) varies from 0, 0.02, 0.04, to 0.06, the phenomenon of low-velocity-favored transition radiation exists. 

hhe performance of this phenomenon would degrade when the loss increases. For example, the value of 

𝑊(𝜔0) within the range of 𝑣 ∈ [𝑣A, 𝑣B] would decrease if the loss increases. 

 


