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1. Experimental Setup
The electron beam (eBeam) emitted by the ultrafast transmission electron microscope (UTEM) 
can be selected within a kinetic energy range of 80 keV to 200 keV, which corresponds to a 
range of sub-relativistic velocities, 𝑣e, of 0.5𝑐0 to 0.7𝑐0 respectively, where 𝑐0 is the speed of 
light in vacuum. The UTEM can be operated in one of the following two modes. The thermionic 
emission mode delivers a flow of single electrons as random current once the temperature 
reaches the work function of the material, which is useful to study quantum interactions [1-6]. 
For 200 keV electrons in this mode, the emittance is 6 nm-mrad at, implying that the diameter 
of the spot size, 𝑑e, can be 2-20 nm with a corresponding convergence semi-angle, 𝜃e, of 3-
0.3 mrad, respectively. Alternatively, the photoemission mode [7] delivers electron pulses, 
which are useful for testing dielectric laser accelerators (DLAs) [8-14]. In this mode, the 
emittance is 400 nm-mrad at 200 keV, which implies that 𝑑e can be 20-200 nm with a 
corresponding 𝜃e of 20-2 mrad, respectively. At a common 𝑑e = 20 nm, the thermionic 
emission mode was selected because its lower emittance allowed for a better overlap between 
the electron and optical supermode. The dimensions of the eBeam along its trajectory were 
calculated from these parameters using Rayleigh criterion. We assume a symmetric eBeam 
profile in the transverse dimension [7] such that the emittance in the X dimension (see Fig. 1 of 
the main manuscript for reference), 𝜖x = 𝜎𝑥𝜎𝑎𝑥 = 𝜖y = 𝜖 where 𝜎𝑥 and 𝜎𝑎𝑥 are the width and 
convergence angle of the eBeam, respectively. Emittance remains constant for a specific eBeam 
energy. Within the emittance, the convergence angle and spot size can be modified via the 
numerical aperture of the magnetic lensing system. To adjust for different eBeam energies, we 
normalize the emittance [15],

𝜖n = 𝛽𝛾𝜖 = 𝛽𝛾𝜎𝑥𝜎𝑎𝑥
(S1)

Where 𝛽 = 𝑣e/𝑐0 and 𝛾 = 1/ 1 ― 𝛽2  is the Lorentz factor. The electron energy (with 
relativistic correction) is,

𝜀e = (𝛾 ― 1)𝑚e𝑐2
0 (S2)

Where 𝑚e is the rest mass of the electron. The width of the eBeam is adjusted by the 
de Broglie wavelength of the electron,

𝜆e =
ℎJ

𝛾𝑚e𝑣e
(S3)

Where ℎJ is Planck’s constant in Joules. Note that lower electron energies have a larger 
de Broglie wavelength which enlarges the spot size of the eBeam.

The eBeam undergoes magnetic lensing in order to steer and focus it onto the sample as well 
as separate the electron energies after the interaction. Since the electrons travel in a helical path, 
the on-chip device is surrounded by trenches so that the substrate can act as a mesa to ensure 
beam clearance. The protrusion of the mesa must be 50 μm higher than the substrate, which is 
satisfied by the 675 μm thickness of the Si substrate. Additionally, appropriate clearance is also 
required beyond the device due to the divergence and the helical trajectory of the eBeam. These 
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constraints limit the maximum effective interaction length, 𝐿eff, to 500 μm. After interaction, 
the electrons would be filtered via a magnetic prism and aperture to measure their energy 
distribution. The relative arrival time of the electron with respect to the laser pulse, and therefore 
the location of their interaction, can be determined by the relative delay between the pump and 
probe pulses.

2. Circuit Layout
We design a photonic integrated circuit to be compatible with the constraints of the UTEM. The 
layout is shown in Fig. 1 of the main text. Inside the UTEM, light can be focused onto the chip 
from a lens with a focal length of 50 mm. This implies that a collimated beam of 5 mm diameter 
can be focused down to a spot size of 30 μm with a convergence angle of 0.4394°. Incident light 
is therefore coupled from free-space into the chip by a surface, vertical grating coupler 
(GC) [16]. We employed only one GC in order to reduce any coupling loss or phase mismatch 
between the arms of a dual-GC setup [17]. The GC is connected to a 90:10 splitter [18, 
19] which routes 90% of the light to the device and uses 10% for feedback. In the 90% arm, 
light is sent to a mode evolution region (MER) in which the fundamental transverse magnetic 
(TM0) mode of the strip waveguide is converted into the desired supermode of the slot 
waveguide [20, 21]. A waveguide bend ensures the proximity of the MER to the edge of the 
device. A deep trench is carved into the chip at both ends of the device to act as a mesa and 
ensure that the diverging eBeam is not obstructed by the underlying BOX layer. The 10% arm 
of the splitter is connected to a Bragg grating (BG) reflector to provide feedback during the 
optical alignment of the chip. A secondary GC and BG are also placed next to the device to 
enable a coarse alignment. Once the incident angle is coarsely aligned using this secondary GC, 
the chip could be moved along the Z-axis to couple light into the primary GC and its alignment 
could be fine tuned based on feedback from the BG in the 10% arm. 

As shown in Fig. 1(a) of the main manuscript, the input GC produces a TM0 mode which 
must then be coupled into the slot waveguide from a single sidewall (to prevent obstruction of 
the eBeam path), and with a specified electric field distribution. These requirements are 
addressed by the MER, which we design using supermode analysis [22, 23] for directional 
couplers and slot waveguides. In this design, a strip waveguide is connected from the 90% arm 
of the splitter to one of the sidewalls of the slot waveguide whereas the other sidewall was 
tapered and bent outward. The connected sidewall gradually evolves the effective index of the 
TM0 mode in the strip waveguide to become the desired supermode in the slot waveguide. The 
conversion efficiency to the target supermode is measured as the insertion loss (IL) from the 
power in the input TM0 mode to the desired supermode. We assume negligible energy leakage 
into the other modes which implies that they do not significantly interfere with the desired 
supermode. So, the phase relationship between the modes is not considered. Since the MER 
depends on the cross-section of the slot waveguide and its supermode, it must be redesigned for 
each supermode and waveguide cross-section. In cases where a strip waveguide is used for the 
interaction, that is, 𝑤gap = 0, then the IL can be set as 0 dB since a MER is not necessary. In a 
future iteration of the design, the IL of the MER can be optimized by also injecting the 
supermode in the output to maximize the power for both forward and backward propagation. 
However, note that although the IL of the MER affects the overall interaction strength, it does 
not affect the coupling strength per photon because this value is normalized to the power of the 
optical pulse. 

For example, an incident beam can be coupled into the GC with an IL of -9 dB [18] and 
guided through the variable intensity splitter and MER with ILs of -0.45 dB [19] and -10 dB, 
respectively. The optical pulse parameters in the slot are determined from the material 
constraints of the slot waveguide in the following section.
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3. Optical Pulse Parameters
The parameters of the input optical pulse are constrained by the accelerating structure. Under 

specific conditions, confined photons in the pulse get absorbed by bound electrons in the 
structure. This photoionization pushes electrons into the conduction band [24, 25]. The 
conduction electrons get accelerated in the laser field and generate an avalanche from impact 
ionization [26]. This plasma is heated by the laser pulse, transferring the electron energy to the 
lattice. If its electron density increases to the point where the plasma frequency matches the 
laser frequency, then resonance occurs and the material gets damaged by ablation [25]. 
Although dielectrics can withstand orders of magnitude higher electric fields than metals, their 
damage threshold still often limits the acceleration gradient, 𝐺. It scales as [24], 𝐺 ∝ 𝐹th, 
where 𝐹th is the damage threshold fluence of the material. The fluence is given by [26], 𝐹th =

2𝑈th
𝜋𝑤x𝑤y

, where 𝑈th is the threshold pulse energy and 𝑤x, 𝑤y are the spot size dimensions. The 
threshold is further lowered by local field enhancements due to light being confined in the 
relatively small dimensions of the accelerating structure. For example, a silica grating has a 
damage threshold fluence of 1.85 J/cm2 at 1500 nm, which is 0.53 times that of bulk silica  (but 
still allows for a 𝐺 of 300 MV/m) [25].

The optical damage threshold of the host material depends on the wavelength and pulse 
duration of the laser. Since it increases with the laser pulse width [27], we set it at 1 ps for our 
Si waveguide. The damage threshold of Si for a 1 ps pulse reaches a local maximum within the 
wavelength range of 1200-1600 nm [24, 25] as compared to 1064 nm [27] or 2000 nm [17] (all 
of which encompass the one- and two-photon ionization regimes). We therefore select two 
operating wavelengths of 1310 nm and 1550 nm, which also benefit from the availability of 
components and laser sources as well as the maturity of fabrication techniques. 

For 1 ps pulses at a wavelength of 1550 nm, breakdown occurs around 0.2 J/cm2 [26]. In the 
case of our slot waveguide, the Si core thickness is 220 nm with an average total width 2𝑤𝑆𝑖 of 
500 nm, which occupies a cross-sectional area of 1.1 × 10―9cm2. This allows for a maximum 
pulse energy of 0.22 nJ corresponding to a peak pulse power of 220 W in the slot. Considering 
an average loss of -19.4576 dB from the GC, splitter, and MER together (as calculated in the 
previous section), the energy of the free-space optical pulse that is incident on the chip must be 
19.4169 nJ corresponding to 19.4169 kW.

Such a high peak pulse power can induce strong nonlinear effects. In fact, these effects are 
even caused at lower powers in Si waveguides because the high refractive index of Si increases 
the confinement [28] and reduces the group velocity [29] of the optical mode, which enhances 
optical interactions with the Si core. Below 5 mW, intra-bandgap states induce single-photon 
absorption and as the optical power increases, the 1.12 eV bandgap of Si induces two-photon 
absorption which dominates beyond 300 mW [29]. Absorption of the optical energy 
consequently generates electron–hole pairs, which cause free-carrier dispersion (FCD) and free-
carrier absorption (FCA). FCA is further enhanced by the fact that the free-carriers cannot 
diffuse out of the modal region in the waveguide [29]. It is determined by the effective modal 
area (calculated from the Poynting vector or the electric field intensity) [29] which corresponds 
to the surface-to-volume ratio of the waveguide [28]. This nonlinearity enhancement increases 
the a TPA coefficient to 1.5 cm/GW [29] as compared to 0.4-1.2 cm/GW for bulk structures 
[28, 29], and the SPA coefficient to 1.9 m-1 [29]. In this case, the recombination rate of the free-
carriers limits the rate at which optical pulses can be generated. Carriers are found to have 
shorter lifetimes of ∼800 ps initially, with longer lifetimes up to ∼300 ns at later stages, 
assuming no initial carrier density [28]. In our case, since the IL of the GC already reduces the 
power by -9 dB when coupling into the chip, followed by a -10 dB loss at the MER, we assume 
these effects to be negligible in the interaction region. Future analysis could quantify these 
effects and even exploit FCA and FCD to control light within the Si structure [29].
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4. Supermodes

The limits of 𝑣e that are imposed by the UTEM also constrain the range of phase velocities 𝑣p =
𝜔 𝑘 of the supermode and consequently, its effective refractive index, 𝑛eff. For example, an 
eBeam of 80 keV or 0.5𝑐 requires a 𝑛eff of 1.9904 for the supermode. Similarly, an eBeam of 
200 keV requires a 𝑛eff of 1.4382 which is lower than the index of the buried oxide (BOX) 
layer. It is therefore unachievable using the standard SOI platform because the mode gets 
coupled into the BOX layer. The amplitude, 𝐸0, of the electric field of the supermode, 𝐸0
cos(𝜔𝑡 ― 𝑘𝑧), is obtained from its individual field components as 𝐸0 = 𝐸2

𝑋 + 𝐸2
𝑌 + 𝐸2

𝑍. To 
account for a non-uniform electric field distribution (as opposed to a Gaussian beam profile), 
we simulate the electric field distribution and obtain its amplitude at each (𝑥,𝑦) point around 
the waveguide cross-section, 𝐸0(𝑥,𝑦). It is multiplied by the sign of the phase to retain the 
direction of oscillation of the field,

𝐸0,Z = |𝐸Z| ∙ sgn(∠𝐸Z) (S4)
We then characterize the properties of the three lowest order modes for each variation of the 

waveguide geometry. These properties are the effective index, 𝑛eff, group index, 𝑛g, and the 
maximum amplitude of the longitudinal electric field component in the center of the gap, 𝐸0,Z
(0,𝑦 > 0). Both 𝑛eff and 𝑛g were converted into the corresponding phase and group velocities 
of the supermode, 𝑣p and 𝑣g, respectively, to compare them directly with the electron velocity, 
𝑣e. We discard the first supermode because its 𝐸Z field exhibits an antisymmetric distribution 
about the 𝑌 axis which results in 𝐸0,Z(0,𝑦 > 0) = 0 as well as opposite phases on either side, 
which renders it useless for coupling. Fig. S1 shows the change in 𝑣p, 𝑣g, and 𝐸0,Z(0,𝑦 > 0) for 
the remaining two supermodes as a result of varying the cross-sectional dimensions of the 
waveguide, 𝑤Si and 𝑤gap. The limits of 𝑣e imposed by the UTEM are shown as black, dashed, 
horizontal lines at 0.5c and 0.7c in in Fig. S1(a,f,k,p).

 
Fig S1. Supermode characteristics for each variation of the waveguide cross-section. (a)-(j) 
Variation of supermode 2 properties with slot parameters at wavelengths of (a)-(e) 1310 nm and 
(f)-(j) 1550 nm. (k)-(t) Variation of supermode 3 properties with slot parameters at wavelengths 
of (k)-(o) 1310 nm and (p)-(t) 1550 nm. In each set, the first two columns show 𝑣𝑝 and 𝑣𝑔 along 
with horizontal, black, dashed lines indicating the limits of 𝑣𝑒. The third column of each set 
shows the maximum EZ field at the center of the waveguide.

In addition to the upper limit on 𝑣p imposed by the UTEM, the refractive index of the BOX 
layer also limits the minimum 𝑛eff beyond which confinement of the supermodes is weakened. 
This corresponds to a 𝑣p of 0.6944c, which is approximately equal to the UTEM limit and 
therefore not shown. Additionally, we find that just beyond this limit, the supermodes still 
remain confined over short propagation lengths since majority of the mode field is distributed 
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in either Si or the external vacuum rather than in the BOX layer, that is, due to the vertical 
asymmetry of the waveguide cross-section. For both supermodes, the positive phase of their 𝐸Z 
field component is above the waveguide due to the lower refractive index of vacuum compared 
to the underlying BOX layer. The distribution of 𝐸Z around the waveguide depends on the 
cross-sectional dimensions of the slot. Narrower sidewall widths are unable to support 
supermode 3 especially at the longer wavelength of 1550 nm. Additionally, longer wavelengths 
are less confined, which generally decreases 𝐸0,Z in the gap. This behaviour is evident in the 
comparison of field distributions between Fig. S1(c) and (h) for supermode 2, and equivalently 
Fig. S1(m) and (r) for supermode 3. The field amplitude also monotonically decreases as 𝑤gap 
is increased as shown in Fig. S1(c,h,m,r). This is because narrowing 𝑤gap squeezes the 𝐸Z field 
between the sidewalls [30]. Although a higher 𝐸0,Z is beneficial to the interaction, note that a 
wider 𝑤gap accommodates a larger eBeam diameter and therefore a longer interaction length. 
As the confinement is weakened for a wide 𝑤gap and thin 𝑤Si, this lowers 𝑛eff allowing 𝑣p to 
reach the upper limit of the system. A higher 𝑣p is more suitable for applications in which the 
final electron velocity, or kinetic energy, is important. 

To obtain the total pulse power, we integrate the Poynting vector over the cross-sectional 
area of the simulation region since it is a local property of the optical field. This was done by 
summing the discretized power over the pixels of the simulation region, such that,

𝑃 = 0.5∫Re(𝑃Z)𝑑𝐴 = 0.5

𝑛px 

𝑖=1
𝑃𝑍,𝑖 ∙ ∆𝑎px (S5)

Where ∆𝑎px is the area of each pixel. We evaluate only the 𝑃Z component because the other 
two components are null since the Poynting vector points in the direction of propagation. The 
simulated, normalized E field was therefore scaled to match the input pulse power by,

𝐸0,exp = 𝑃exp

𝑃sim
 𝐸0,sim (S6)

5. Interaction Length
In a quantum interpretation of the electron, the spatiotemporal distribution of its wavefunction 
is larger than a classical point particle. Hence, we estimate the duration as 500 fs based on 
previous measurements in the UTEM (as indicated in the Supplementary Material of [1]). In 
these calculations, we assume the probability distribution of the electron to be uniform within 
the spot size of the eBeam since energy can be exchanged at any point in the cross-section. We 
also approximate the helical trajectory of the eBeam to be straight along 𝐿eff. In the X-Y 
transverse dimension, 𝐿eff is limited by the divergence of the eBeam within the slot. For 
example, since a larger 𝑑e corresponds to a lower 𝜃e, it allows a longer slot and therefore, longer 
interaction length, 𝐿eff. The maximum 𝐿eff that can be accommodated by the slot is calculated 
for every combination of eBeam diameter and height, 

𝐿eff =
2 min(ℎe,𝑡Si) ― 𝑡Si

2
+  

𝑤gap
2

2

tan 𝜃e

(S7)

However, maximizing 𝐿eff does not necessarily maximize the overall interaction. The 
interaction could benefit from either a small, focused spot size in a narrow slot width, or a low 
convergence angle over a longer interaction length, which indicates a trade-off. Along the Z 
propagation direction, 𝐿eff is limited by dephasing as 𝑣e is accelerated beyond 𝑣p. It is also 
limited by the mismatch with 𝑣g depending on the limited durations of the optical pulse and 
electron wavefunction, but this limitation is not as severe. This is why 𝐿eff is a crucial variable 
in maximizing the coupling efficiency. In this process, the 𝐸Z field distribution overlapping with 
the electron must also be maximized. As the eBeam converges and diverges through its focal 
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point, the hourglass shape is determined by the convergence angle, width, and depth of focus 
[31]. To account for these gradually changing conditions along the length of the interaction, we 
discretize 𝐿eff into 10 segments and evaluate coupling using the average cross-sectional area of 
the eBeam in each segment. The sum of these values determines the overall coupling. Regarding 
the evolution of the supermode over the interaction region, we assume the pulse profile and 
peak power to undergo negligible dispersion or modulation throughout propagation [17].

6. Coupling Strength
When an optical pulse co-propagates with a free electron, its properties are imprinted onto the 
wavefunction of the electron by the phase-front of its longitudinal electrical field. Maximum 
energy transfer occurs when both the photon and electron are traveling in the same direction at 
the same speed, that is, when 𝑣e is matched to 𝑣p. The electron can then surf the plasma 
wake-field of the optical wavefront. This stimulated interaction modulates the kinetic energy 
spectrum of the electron. Adding or removing kinetic energy is equivalent to accelerating or 
decelerating the electron, respectively. In our case, we assume that the interaction is localized 
in the near field of the device where diffraction effects are insignificant. We therefore analyze 
it using PINEM theory [32, 33].

Exciting the charged tip inside the UTEM emits an electron traveling in the +𝑍 direction. 

Its wavefunction can be written as, 𝜓(𝒓,𝑡) = 𝜙(𝒓,𝑡)ei 𝑘0𝑧―𝐸0𝑡 ℏ  with its behaviour described 
by the reduced Schrödinger equation,

𝑣
∂

∂𝑧 ―
∂
∂𝑡 𝜙 = ―

𝑞e𝑣e
ℏ𝜔 e―i𝜔𝑡𝐸Z ― e𝑖𝜔𝑡𝐸∗

Z 𝜙 (S8)

Here, we replace ∇ by i𝑘0𝒛, and ignore any wavefunction gradients that do not contribute to 
the direction of propagation ei𝑘0𝒛. Hence, in the absence of any interaction, the electric field 
contributing to the electron energy is 𝐸Z = 0 resulting in an incident wavefunction of the form,

𝜙(𝒓,𝑡) = 𝜙0(𝒓 ― 𝑣e𝑡𝒛) (S9)
Which satisfies the reduced Schrödinger equation above and accounts for 𝑣e (or equivalently 

𝜀e as per equation S2). We ignore transverse and mismatched components of the field due to 
their negligible effect from a co-propagating pulse. During the interaction, the electron 
wavefunction exchanges quanta of ℏ𝜔 energy to co-propagating photons. As per the PINEM 
effect [33], it has an equal probability of absorbing or emitting a photon and therefore gaining 
or losing energy, which causes it to accelerate or decelerate, respectively. Its spectrum therefore 
gets redistributed around a periodically spaced set of energies 𝜀0 ± 𝓁ℏ𝜔, which modifies 
equation S9 to,

𝜙(𝒓,𝑡) = 𝜙0(𝒓 ― 𝑣e𝑡𝒛)
𝓁

ei𝓁𝜔
𝑧

𝑣e
―𝑡 𝑓𝓁(𝒓) (S10)

This represents a Fourier decomposition of the wave function in terms of its energy, which 
is quantized, or discretized, by the index 𝓁. In other words, the main Fourier coefficients 𝑓𝓁 are 
spaced from each other by the laser frequency ℏ𝜔, which allows them to be expressed as a 
summation instead of an integral. These 𝑓𝓁 coefficients can be written in terms of Bessel 
functions as 𝑓𝓁(𝛽) = ei𝓁 arg(―𝛽)𝐽𝓁(2|𝛽|) and integrated along the +𝑍 interaction length [34]. 
The probability of gaining or losing 𝓁 quanta of photon energy is therefore 𝑃𝓁 = |𝐽𝓁(2|𝛽|)|2. 
The coupling strength over the total interaction length ( ― ∞,∞) can then be obtained from the 
probability of absorbing or emitting a photon,

𝛽(𝑧) =
𝑞𝑒
ℏ𝜔

∞

―∞
𝐸Z(𝑧)e―i𝜔𝑧

𝑣𝑑𝑧 (S11)

Note that since 𝜔 is in the denominator, this implies that lower frequencies (or equivalently, 
longer wavelengths) have a higher probability of interaction. However, since they exchange less 
ℏ𝜔 energy with the electron, the resulting coupling strength could still be lower. This could 
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explain why our design produces comparable results at both wavelengths of 1550 nm and 
1310 nm alongside previously reported calculations at 2000 nm [17].

After the inelastic interaction with the laser field, the spectral distribution of 𝜀e can be 
quantified by the coupling or Rabi parameter [35], 𝑔, which represents the transition amplitude 
between adjacent electron energy states. This coupling constant, 𝑔, links the classical 
acceleration of an electron to the field of the optical mode. If 𝑔 ≫ 1, the electron energy width 
(or bandwidth) scales as 4|𝑔| times the optical photon energy [36]. Taking into account the 
spatial distribution of 𝐸Z, the interaction at each spatial co-ordinate (𝑥0,𝑦0) overlapping with 
the spot size of the eBeam can then be written in terms of this dimensionless coupling 
constant [33, 37, 38],

𝑔(𝑥0, 𝑦0) =
𝑞𝑒
ℏ𝜔

∞

―∞
𝐸(𝜔)

𝑧 (𝑥0, 𝑦0,𝑧,𝑡(𝑧))𝑑𝑧 (S12)

The superscript (𝜔) denotes the frequency dependence of the electric field and 𝑡(𝑧) 
indicates the temporal delay with respect to the electron wavefunction. This integral represents 
the electron energy gain/loss normalized by the photon energy. It suggests that a maximum of 
2|𝑔| photons are exchanged during the interaction, which implies both gain and loss resulting 
in a 2|𝑔|ℏ𝜔 energy spread of the electron spectrum [1].

For optimal coupling, 𝐸(𝜔)
𝑧  must be constant so that the interaction with the electron beam 

is maintained. In contrast, a DLA configuration would require the phase velocity of 𝐸𝑧 to be 
increased along the interaction length to maximize the energy gain of the electron. The mode 
field distribution of the electric field 𝐸Z(𝑥,𝑦) was obtained from 3D FDTD simulations. The 
main contribution to the interaction is at the maximal field amplitude near the waveguide 
surface. At this proximity, the field travels approximately as a phasor so that the expression for 
𝐸Z can be separated as 𝐸0,Z(𝑥0,𝑦0)e𝑖𝑘𝑍𝑧 and the phase mismatch 𝑘𝑍 ― 𝜔 𝑣e  can be separated 
in equation S12 as,

𝑔(𝑥0, 𝑦0) =
𝑞𝑒
ℏ𝜔

∞

―∞
𝐸0,Z(𝑥0,𝑦0)e𝑖 𝑘Z―𝜔 𝑣e 𝑧 𝑑𝑧 (S13)

Since energy can be exchanged at any (𝑥,𝑦) point in the region of overlap, we average the 
electric field over this region. Additionally, assuming 𝑣e = 𝑣p, the coupling strength along a 
fixed length simplifies to,

𝑔 =
𝑞𝑒
ℏ𝜔𝐸Z,avg𝐿eff (S14)

Note that this is only valid for length scales in which the eBeam spot size does not 
significantly change. Hence, this simplified form of 𝑔 must be calculated separately for each 
discretized segment along 𝐿eff depending on the convergence angle of the eBeam, as mentioned 
in the previous section. Additionally, as in equation S10, PINEM theory uses the approximation 
that the electron velocities remain constant during the interaction. However, when the electrons 
are accelerated, they no longer match 𝑣p. This implies that 𝐿eff is limited by the phase-matching 
condition, 

1
𝑣e

∫ 𝑣e(𝑧) ― 𝑣p 𝑑𝑧 <
𝜋𝑣𝑝

𝜔  where  
𝜋𝑣𝑝

𝜔  is the half wavelength of the mode. Note that 
in this equation, 𝑣e, 𝑔, and 𝐿eff are inseparable variables and the rigorous electron velocity 𝑣e
(𝑧) is not known along its trajectory. Hence, we modify this condition to,

𝐿eff
𝑣e,avg(𝑔(𝐿eff)) 𝑣e,avg(𝑔(𝐿eff)) ― 𝑣p ≤

𝜋𝑣𝑝

𝜔 (S15)

Here, 𝑣e,avg(𝑔(𝐿eff)) = (𝑣e(𝑧 = 0) + 𝑣e(𝑧 = 𝐿eff))
2  assuming linear acceleration and 

𝐿eff
𝑣e,avg(𝑔(𝐿eff)) 

is the interaction time. Moreover, since equation S14 does not account for the dependence of 
the pulse envelope, we effectively assume that the optical pulse and electron do not incur 
significant drift along a particular segment of 𝐿eff. The validity of this assumption depends on 
whether the segment is short enough for the interaction to not be affected by a group velocity 
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mismatch or if the duration of the pulse is long enough for the driving-field amplitude to be 
relatively constant over the segment. Although the interaction is maximized when both 
conditions are satisfied, the phase modulation of the electron wavefunction is still expected to 
be uniform and deterministic for nonideal cases [35, 36]. The energy gained (or lost) by the 
electron can then be evaluated as [1],

∆𝜀e = 2𝑔ℏ𝜔 (S16)
With the acceleration gradient given by,

𝐺 = ∆𝜀e/𝐿eff (S17)
Note that this value is dependent on 𝑔, which is dependent on the power (energy and 

duration) of the optical pulse [2]. In a quantum-optics description [39], we consider PINEM 
driven by a coherent state |𝛼⟩ with an average number of |𝛼|2 photons. In the classical field of 
a mode with total energy per µm, 𝑈, the average number of photons is 〈𝑛〉 = 𝑈/ℏ𝜔. Therefore, 
we interpret the coupling strength per photon as [39],

𝑔Qu =
𝑔
𝑛 =

𝑔
𝛼 =

∆𝜀e

2 𝑃slot𝑇pulseℏ𝜔 
 , (S18)

which is a dimensionless parameter [35, 39] representing the proportion of the electron 
energy gain from one photon in the supermode. The regime of strong coupling is accessed by 
𝑔Qu ≥ 1 [39, 40]. In this manner, 𝑔Qu is related to both the output kinetic energy gain of the 
electron and the input optical energy of the laser pulse, which therefore makes it a suitable 
indicator of coupling efficiency.

We confirm the validity of our reasoning and assumptions by applying them to the use case 
presented in this work. Specifically, we use these equations to the find the maximum coupling 
strength per photon or equivalently, the coupling efficiency of the device design. It is done by 
characterizing the parameter space of the design in the following manner. Each set of slot 
dimensions, 𝑤gap and 𝑤Si, host specific supermode profiles with a corresponding effective 
index, 𝑛eff, and phase velocity, 𝑣p. This sets the electron velocity, 𝑣e, which constrains the 
eBeam emittance, that is, its diameter, 𝑑e, and convergence angle, 𝜃e. The eBeam height from 
the BOX layer, ℎe, is restricted to less than 500 nm since the interaction strength decayed 
exponentially with increasing separation [36]. Hence, the maximum 𝐿eff is geometrically 
constrained by 𝑤gap, ℎe, and 𝑑e. These parameters are used to calculate the coupling constant, 
𝑔, which is divided by the square root of the number of photons in the pulse, 𝛼, [39] to produce 
the coupling constant per photon, 𝑔Qu. In this manner, 𝑤gap, 𝑤Si, 𝑑e↔𝜃e, and ℎe are the 
independent variables in the parameter space; E0,Z, 𝑣e = 𝑣p, 𝐿eff, and 𝑔 are the dependent 
variables; and 𝑔Qu is the figure of merit. We calculate 𝑔Qu for both supermodes and both 
wavelengths over all variations of slot geometry to determine the optimal combination. The 
characterization of this parameter space is shown in Fig. S2 and Fig. S3.
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Fig S2. Coupling results at 𝜆 = 1310 nm for (a-g, top) supermode 2 and (i-o, bottom) supermode 
3 hosted by a waveguide with thickness of 220 nm and varying wall and gap widths. Optimal 
eBeam parameters are shown as (a,i) initial KE, 𝐾𝐸i, (b,j) diameter, 𝑑e, and (c,k) height, ℎe. They 
overlap over (d,l) the effective interaction length, 𝐿eff, to maximize (e,m) the coupling per photon, 
𝑔Qu, to produce the calculated (f,n) energy gain, ∆𝜀e, and (g,o) acceleration gradient, 𝐺.

Fig S3. Coupling results at 𝜆 = 1310 nm for (a-g, top) supermode 2 and (i-o, bottom) supermode 
3 hosted by a waveguide with thickness of 220 nm and varying wall and gap widths. Optimal 
eBeam parameters are shown as (a,i) initial KE, 𝐾𝐸i, (b,j) diameter, 𝑑e, and (c,k) height, ℎe. They 
overlap over (d,l) the effective interaction length, 𝐿eff, to maximize (e,m) the coupling per photon, 
𝑔Qu, to produce the calculated (f,n) energy gain, ∆𝜀e, and (g,o) acceleration gradient, 𝐺.

For a strip waveguide, 𝑤gap = 0, which implies that the MER is not needed and therefore a 
larger amount of optical energy can reach the interaction region, resulting in a higher 𝑔 although 
this effect is normalized by 𝑔Qu. For cases of a wide 𝑤gap, since 𝑑e is determined by 𝑣e, it 
cannot be increased enough to maximize overlap with the regions where the amplitude of 𝐸Z is 
the highest, such as near the sidewalls. For a narrower 𝑤gap, the eBeam is aligned directly above 
the waveguide whereas for a wider 𝑤gap, the optimal ℎe is inside the slot. An increase in 𝑤gap 
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accommodates an extended 𝐿eff since larger eBeam dimensions can fit into a wider gap. It also 
generally increases 𝑣g towards 𝑣p (as seen in Fig. S1), which improves the temporal overlap. A 
longer 𝐿eff improves the overlap and therefore the coupling strength. The highest 𝐸Z amplitudes 
are found in supermode 3, but this higher order supermode can only be confined if 𝑤Si
> 250 μm. At a wavelength of 1550 nm, the weaker confinement allows for generally a higher 

𝑔Qu, especially for supermode 3. However, we must ignore the first 4 results for supermode 3 
at 1550 nm, as shown in Fig. S3(i), because their corresponding 𝑛eff and 𝑣p are beyond the 
limits of the BOX and UTEM respectively. Despite this, supermode 3 still achieves the highest 
𝑔Qu of 0.4266 with a sidewall width of 300 nm and gap width of 200 nm, which induces the 
largest energy gain of 28.27 keV. This corresponds to an acceleration gradient of 1.05 GeV/m, 
which is one of the highest, but not the highest gradient achieved in this design scheme. The 
highest gradient of 1.68 GeV/m is achieved for supermode 2 at 1310 nm hosted by a sidewall 
width of 300 nm and a gap width of 0 nm as seen in Fig. S2(g) resulting in a 𝑔Qu of only 0.1928 
corresponding to an energy gain of 13.9 keV. Since both the gradient and gain are important 
performance metrics for such a device, our results confirm that maximizing 𝑔Qu produces the 
best overall coupling efficiency. 

On a chip, the interaction length might need to be shortened due to the space occupied by 
the waveguide bend and the MER. As a result, we expect a measured ∆𝜀e to be lower than the 
calculated value. However, note that before reaching the interaction region, the eBeam must 
anyway converge over a certain finite length between the surface of the BOX layer and the 
region above the slot waveguide. Hence, for future designs, this space might be sufficient to fit 
a compact, dispersion engineered [41] MER without significant loss of coupling strength. 

7.  Methods

The normalized 𝐸0,Z field was simulated in 2D using Ansys Lumerical Mode. Its calculated 
properties were then refined using a 3D simulation in Ansys Lumerical FDTD. The MER was 
also simulated and optimized in 3D using Ansys Lumerical FDTD. The mesh size of the 
simulation region was set at 8 nm, which determined the resolution of the simulated electric 
field. This imposed an incremental area 𝑑𝐴 of 6.4 × 10―17 m2 over which the E-field was 
discretized. The simulated E-field was distributed over a specific number of pixels as 
determined by the resolution of the mesh and was normalized to a maximum amplitude of 
1 V/m. These results were exported to MATLAB where the interaction with the electron was 
calculated and optimized. 
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