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Section 1: Symmetry properties of the spacetime metric and measurements of all 

its components 
 

In this section we discuss whether the spin value (up or down), rather than its axis only, has 

any effect on spacetime. Up to now we have mostly considered 00( )g x
, which is often the 

most significant component of the metric, but to answer this question we shall now study all 

the 16 ( )g x

  terms, and analyze their symmetry properties.  

 

Let us first discuss parity and time-reversal transformations. The parity transformation 

defined by 
0 1 2 3 0 1 2 3( , , , ) ( , , , )P x x x x x x x x     and the time-reversal transformation defined 



 

2 

 

by 
0 1 2 3 0 1 2 3( , , , ) ( , , , )T x x x x x x x x   flip the sign of the spin. However, due to the tensor 

properties of the spacetime metric ( )g x

 , both 00g  and all of the ijg (1 , 3)i j   remain 

invariant under both parity and time-reversal transformations, i.e., 

00 00 00( ) ( ( )) ( ( ))g x g P x g T x     and ( ) ( ( )) ( ( ))ij ij ijg x g P x g T x    . Since the spin flips 

its sign under these transformations, it follows that 00g  and ijg  (1 , 3)i j   are independent 

with respect to the spin sign. 

 

In contrast, the six 0 0,i ig g components flip their signs under parity and time-reversal 

transformations: 

  
Since the spin 

also flips its sign under these transformations, the six 0 0,i ig g  components are either (#1) 

correlated to the spin or (#2) nonexistent, i.e., equal to zero (if, in addition, 00 , ijg g  are time-

independent, then the spacetime would be called static). If 0 0,i ig g  are nonzero and correlated 

to the spin, as in option (#1), then there should exist a stronger spin censorship mechanism 

preventing not just the detection of the spin axis (as in the main text) but also the detection of 

the spin direction. In the next paragraphs we prove that in order to prevent a paradox, the 

measurable spacetime and all components of ( )g x

  are both spherically symmetric and 

static, with 0 0,i ig g  being zero, i.e., option (#2).  

  

To continue, we show that all 16 terms of ( )g x

  can be measured with clocks, each 

moving along a different timelike trajectory in spacetime. Denote the trajectory of the clock as 

( )x t
. The proper-time interval d  along a short timelike 4-vector interval dx

 of the 

trajectory ( )x t
 is given by 2 2 ( ( ))c d g x t dx dx  

  . Thus, by using several variations of 

0 0 0 0 0 0( ) ( ( )) ( ( )) ( ) ( ( )) ( ( )).i i i i i ig x g P x g T x g x g P x g T x             
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the clock’s trajectory, one can determine all of the components of the spacetime metric 

( ( )).g x t

 This is true, because g g   and also because tensors of the form dy dy 
 

(where dy
 are time-like 4-vectors) span the space of (4×4) symmetric matrices (due to 

symmetry properties of the spacetime, one can greatly reduce the number of necessary 

measurements). 

 

The ability to use clocks for measuring all the components of the spacetime metric 

( ( ))g x t

  suggests a generalized gedanken experiment that follows the same lines of the 

experiment in the main text, and implies that there exists a generalized spin spacetime 

censorship: It should be impossible to infer the spin axis and direction (of a spin-½ particle) 

from measuring any component of ( ( ))g x t

  and from any measurement of proper-time 

intervals 2 2 ( ( ))c d g x t dx dx  

  . Interestingly, such a generalized spin spacetime 

censorship principle imposes additional important constraints on the measurable values of the 

spacetime metric g  around a spin-½ particle. The measurable tensor has to be spherically 

symmetric, and static with the six components 0 0,i ig g  being zero. These constraints and other 

additional symmetry requirements will be presented below. 

 

We introduce two additional symmetry properties of the spacetime metric that are 

associated with the spin: (1) invariance of the metric tensor with respect to continuous time 

translations; (2) invariance of the metric tensor with respect to continuous rotations around the 

spin axis. A spacetime endowed with these two symmetries is both stationary and cylindrically 

symmetric. With a proper choice of spherical coordinate system ( , , , )t r   , it is well known 

that the most general possible form of this metric is given by1, 



 

4 

 

 

  
22 2 2 ( , ) 2 2 ( , ) 2 2 ( , ) 2 22 2 2( , ) 2 s ( )n ( ,i ) ,r r r rc d e dt e dr e d er d r dtc r              (1) 

where   is the polar angle measured with respect to the spin axis and   is the azimuthal angle 

(describing rotations around the axis of the spin). We can then measure the components of this 

spacetime metric, with clocks moving along a specific timelike 4-vector in the spacetime. 

Choosing for the clocks stationary 4-vector paths of the form 0 0 0 0( , , , ) ( ,0,0,0)t r dt   , we see 

that spin spacetime censorship is maintained if and only if ( , ) ( )r r   - i.e.,   is only a 

function of r  (independent of  ). Furthermore, choosing radial paths for the clocks, 

0 0 0 0( , , , ) ( , ,0,0)rt r dt u dr    with ru c , we see that spin spacetime censorship is maintained 

if and only if ( , ) ( )r r  . Finally, choosing spherical tangent trajectories of the form 

0 0 0 0( , , , ) ( ,0, , )t r dt u dt u dt     with 2 2 2 2 2 2 2

0 0 0 clocksin( )r u r u u c     we see that in order to 

maintain the spin spacetime censorship, the proper-time d  must be a function of just two 

parameters: the radial coordinate r  and the speed clocku . It follows that we must have 

( , ) ( , ) ( )r r r      and ( , ) 0r   . Thus, spin-spacetime censorship seems to allow 

only spacetime metrics equivalent, upon measurement, to 

 2 2 2 ( ) 2 2 ( ) 2 2 (2 2 2) 2 2 2sin )( )r r rc r rc d e dt e dr e d d        , which implies spherical 

symmetry (for a precise definition see e.g., 2,3). This spherical symmetry of the spacetime 

guarantees that the spin’s axis and the spin’s direction cannot be inferred with clocks regardless 

of their trajectories. 

 

To summarize, this section showed that generalizing our gedanken experiment enables 

using a clock to measure all the components of ( )g x

 . In principle, the terms 0 0,i ig g  should 

enable measuring the direction of the spin, and not only its axis, as in the main text. Therefore, 
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a classical way to prevent a paradox in our gedanken experiment is by determining that the 

measurable spacetime and all the ( )g x

  components are spherically symmetric and static, 

with 0 0,i ig g  being zero.  As explained in the main text, some quantum approaches could 

potentially bypass a small classical deviation from spherical symmetry. 

 

Section 2: A related gedanken experiment with spatial degrees of freedom 

instead of spin 

 

This section, which continues the theme of combining concepts from general relativity and 

quantum information, describes a related gedanken experiment. In this additional gedanken 

experiment, the entangled variables of Alice and Bob are their particles’ positions instead of 

spins. This gedanken experiment is a modified version of the one presented in4. It could be 

utilized to present some well-known conceptual problems with the semi-classical model 

(according to which it is assumed that the spacetime curvature is proportional to the expectation 

value of the stress-energy tensor4,5). While the semi-classical approximation creates a paradox 

with the gedanken experiment presented in this section, we will show that a simple quantization 

of linearized gravity leads to physically sound results (no paradox), namely that relativistic 

causality is maintained. We also discuss the difference between the two experiments, i.e. why 

the original gedanken experiment from the main text is not resolved (i.e., causality and no 

cloning are not maintained) by such a quantization of linearized gravity (in which each of the 

particles’ ket states couples to a different spacetime ket state). 

To analyze this gedanken experiment, consider an entangled state of the form 

 

 

 

1

2

1
,

2

B A B AB A B A

B A B A

         

       

p p p po R o R o R o R

B A B A

 
 

(2) 
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where A AA
  

p
o R A  and A AA

  
p

o R A  denote two discrete ket state particle 

positions in Alice’s lab (and similarly, ,B BB B B B
     o B B o B B  denote discrete 

ket state particle positions in Bob’s lab).  

 

In an attempt to communicate with Bob, Alice can measure her particle using any basis she 

wants to choose. Then, Bob can use clocks to measure time-dilation effects in an attempt to 

decipher Alice’s choice of measurement basis. Using the linear approximation of gravity we 

find that, 
2

00, 00 00 4

2 1
( ) ( ) 1

| |

G
g h mc

c


 
   

 
 B r r

r B
 if Bob’s particle is in 

B
B  and 

2

00, 00 00 4

2 1
( ) ( ) 1

| |

G
g h mc

c


 
   

 
 B r r

r B
  if his particle is in 

B
B . Thus, the combined 

state of the system (taking into account Bob’s time dilation measurements) is described by  

  00, 00,

1
( ) ( )

2 B A B A
g g           B Br B A r B A . (3) 

Now let us consider the effect of Alice’s choice of measurement basis. Alice can choose 

any basis of the form  * *,
A A A A

        A A A A . The effect of her 

measurement on Bob’s particle is described by tracing out the density matrix     with 

respect to her measurement basis. Noting that  

   * * * *

00, 00,

1
( ) ( )

2A A B B
g g           B BA A r B r B  

    00, 00,

1
( ) ( )

2A A B B
g g            B BA A r B r B  (4) 

we obtain a reduced density matrix of the form  

  

  

00, 00, 00, 00,

00, 00, 00,

A

* *

* *

00,

( ) ( ) ( ) (

=Tr

1

2

1

)

( ) .( ) ( ) ( )
2

A A A

B B

B B

B A

B B

B B

g g g g

g g g g

   

   

   

   

   



 


     

     




   

          
 

B B B B

B B B B

A A A A

r B r B r B r B

r B r B r B r B

 (5) 
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We then trace out the spatial degrees of freedom  ,
B B

 B B  by calculating 

  ,
Tr TrB B B B BB B B B

   


     
B B

B B B B . (6) 

We note that 

     00, 00, 00, 00,

* *( )
1

(
1

(
2 2

) ) ( )BB B
g g g g       

   


 
 


B B B BB B r r r r  

     00, 00, 00, 0 ,

* *

0( )
1 1

,
2 2

( ) ( ) ( )BB B
g g g g       

    
 

 
 B B B BB B r r r r      (7) 

and hence we obtain the reduced density matrix that describes Bob’s clocks: 

    2 2 2 2

00, 00, 00, 00,

00, 00, 00, 00,

( ) ( ) ( )

Tr

1 1

2 2

1

( )

( ) ( ) ( ) (
1

2
) ,

2

clocks BB

g g g g

g g g g

 

      

   

 

    
 

   

 

 

 

B B B B

B B B B

r r r r

r r r r

 

 

 

(8) 

which is maximally mixed (the probabilities of detecting the original locations 

,B B B
  o B B B B B

  o B B  are both equal to ½). This matrix is completely 

independent of any basis used in the description of Alice’s measurement process - precisely 

what we need to ensure that the “no signaling” principle is obeyed. 

 

Going back to our “spin-based” gedanken experiment (from the main text), we can ask: 

Would the quantization of linearized gravity maintain relativistic causality, as it did for the 

gedanken experiment presented here? Would there be equivalent consequences to the two 

gedanken experiments? 

 

We show that the answer to both questions is no. The spin offers unique consequences. 

 

While it seems at first that the above spatial gedanken experiment is similar to the spin 

gedanken experiment, they are inherently different: The algebra of spin addition is different 

from that of spatial coordinates. The superposition of spin states along the x̂ axis can end up in 
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a spin oriented along the ŷ axis, which cannot occur with spatial coordinates. In practical terms, 

it seems that time dilation measurements can localize a particle but they cannot determine 

its spin orientation. So it is the richness of the spin algebra, and the specific way in which it 

couples to the spacetime, that leads to interesting and important consequences, which cannot 

be obtained with the spatial version of the gedanken experiment.  

 

 

Section 3: A quantum description for the spacetime associated with a single 

spin-half particle and a quantum measurement with an ideal clock 

 

In this section, we attempt to construct a quantum description of a single spin-half particle 

that includes both its spin and the surrounding spacetime. We begin by describing the quantum 

state of a stationary (i.e. completely delocalized) spin-half particle with a specific spin state 


S  that is coupled to the spacetime. This state is translation invariant, and therefore 

translating the particle’s state and summing over all the possible translations, we obtain the 

following quantum representation: 

   3

0exp ( , )id E t ST  S x x S  , (9) 

where 0E  is the rest mass and ( , )ST 
x S  denotes the spacetime quantum ket vector 

associated with a spin 


S  located at x . 

By boosting this stationary particle state, we obtain the state of a completely delocalized 

particle with momentum p :  

                          3 exp ( ) ( ) ( ) ,( ,) id E t B ST    p
S x p x p x Sp     (10) 
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where '

'( () )  

 
p

S β Sp  is the Dirac spinor associated with momentum p , spin 
S  , boost 

spin transformation '( )


p
β , velocity / c

p p
β u ,  ( 2 1/2

0(1 ) m  p pp β u ), and a boost 

operator ( )B p  imbuing a particle at rest with momentum p . It should be noted that ( )B p  acts 

on the entire spacetime of the particle, applying to it a Lorenz transformation '( )L

 pβ . The 

spacetime metric g x
    associated with the boosted spacetime ket state ( ) ( , )B ST 

p x S  is 

just a Lorentz transformation '( )L

 pβ  of the spacetime metric ( ),; STg x 


  x S  associated 

with the state Spacetime of spin at
S x  - i.e.,  

  
' ' '

' ' ' )( ,[ = ( ) ( ) (] ;) STg x L L g L x     

     
  p p p

x Sβ β β ,       (11) 

Finally, we construct a general quantum state as the superposition of these boosted states, and 

thus it is formally described by, 

         3 3, exp (( ) , )) ( ) ( ,id a d E t B ST


      p

S

p p S S x p x p x Sp                      (12) 

where,  ,a 
p S  are the amplitudes associated with each momentum and spin state. It is 

important to note that even-though that each plane wave solution as in (10) is completely 

delocalized, we are particularly interested in the case in which their superposition is localized.  

Using this approach, we now turn to analyze our gedanken experiment quantum 

mechanically. To do this, we shall calculate the possible values of the spacetime metric element 

00g  at an arbitrary spacetime point 0(0, )x . We shall compute this with the aid of an ideal 

quantum clock located at time 0t   at 0x  . An ideal clock could be a qubit that is used for 

tracking the time. It could be, for example, a two-level atomic system of the form 

 clock clock 0( ) 0 1exp( () , )c c ci tt d t      x x x x , where 0,( )c ct x x  is a 
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wavepacket (located at the vicinity of 0x ) describing the position of the clock and 

clockexp( )0 1i t   is a time dependent qubit (realized, e.g., by two energy levels of the 

atom6). For simplicity, we shall now assume that the clock’s mass and energy are small when 

compared to the mass and energy of the spin-half particle (but the following calculations can 

be generalized provided that the clock and the particle are separated by a sufficiently large 

distance). Furthermore, before we continue, let us note that the evolution of the clock’s wave 

function under the influence of an external gravitational field is given by, 

  
clock

clock 00 0

3

00

( )

0 1 ( .exp [0, ] [0, ], )cc c c c ci dt g dt g

dt

d







     x x x x x x
 

 

(13) 

Thus, by measuring the qubit’s   clock 00 00 exp [0, ] 1i dt g  x  state in the computational 

basis, we can find the possible values of the parameter 
00 0[0, ]g x . Now let us consider the case 

where the clock is influenced by a quantum superposition of several gravitational fields 

(induced by the wavefunction of the spin-½ particle particle ). This measurement is described 

by noting that the quantum state of the combined system, i.e., the electron and the clock’s time 

pointer at time ,dt  is given by 

particle and clock's pointer ( )dt   

 

 

  
   

3 '

'

3

0 0 ' 0

cloc

3

k 0 0 '

( , )

( , )

, ( )

exp ( ) ( ) ( , )

( ) ( ) ( ) 0, ; ,

exp ( ) ( ) ( ) 0, ; ,0 1

c c c c

c

c ST

ST

d

d a

id E dt B ST

dt L L g L

i dt L L g L







  





  

 

  

 



  

   

     

     







S

p

p p p

p p p

x S

x S

p p S p S

x p x p x S

x β β β x - x x x x

β β β x - x

 

 

 

 

 

 

(14) 
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where, as explained above,  0 0 ' ( ),( ) ( ) ( ) 0, ;c STL L g L   

 
  p p p

x Sβ β β x - x  is the time 

dilation effect (at cx ) which is associated with the boosted state ( ) Spacetime of spin atB 
p S x . 

 

Finally, to calculate the possible values of the clock’s time dilation, we simply trace out all 

the degrees of freedom associated with the electron and the clock’s position. This way we 

obtain the clock’s density matrix: 

     

  
  

3 3 3

0 0 ' 0

*

0 0 ' 0

clock 0

3
( ,

( ,

)

)

( ) , , exp ( ) ( )

( ) ( ) ( ) 0, ; ,

( ) ( ) ( ) 0, ;

0

,

exp (

clcok

c c cc

c c c

ST

ST

i idt d d d a a E E dt

dt L L g L

dt L L g L

i d L

d

t







 

  

 

  

 











    

     

     

  



   p q

S

p p p

q q q

x S

x S

x q p q S p S p q x

x β β β x - x x x

β β β x - x x x

   
   

0 '

clock 0 0 '

( ,

(

)

, )

) ( ) ( ) 0, ;

0 exp ( ) ( )

1

( ) 0, ; 1 .

c

c

ST

ST

L g L
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          (15) 

In particular, we see that spin-spacetime censorship is maintained if the spacetime metric is 

spin-independent. Note that this is a sufficient, but not necessary, solution to the question – 

how relativistic causality and no-cloning are maintained in our gedanken experiment.  

 

Elaborating on the possibility that the spacetime metric is spin-independent, we note that it 

imposes a very strong condition of spin censorship, as it implies that the spacetime associated 

with a single spin is spherically symmetric. Assuming that the metric is indeed spherically 

symmetric can reduce the number of possible spacetime metrics according to Birkhoff’s 

generalized theorem2. For example, one could consider the spherically symmetric 

Schwarzschild metric centered at the localized spin. This choice is consistent with our 

previously described dust stress-energy tensors approach (classical approach #2). However, if 

the spacetime (around the spin-½) is indeed spherically symmetric, then one may also expect 

certain classical ramifications for the EMFE. For example, many particles having all their spins 
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pointing in the same direction, and thus forming a very strong magnetic field, may still show 

no break of spherical symmetry of the time dilation effect around them. Therefore, this 

particular solution (maintaining causality and no cloning in our gedanken experiment) seems 

to lead to a classical modification of EMFE with implications on cosmological scales, unless 

it can somehow be shown that the collective spacetime effect of many particles is different 

from that of a single particle (see e.g., the paragraph regarding an additive auxiliary stress 

energy tensor in SI section 5). 

 

A different pathway for achieving spin censorship based on the formalism here involves an 

idea related to weak measurements7: consider a situation where the clock’s state has a very 

broad distribution around the expectation value of clock  from which it is practically impossible 

to infer the axis of the spin (the back-action of the pointer on the measured system could also 

contribute to the accumulated uncertainty). Applying weak measurement is quite plausible due 

to the minuscule coupling strength between the spin and the clock, leading to a shift in the 

clock pointer that may be much smaller than its quantum uncertainty (even if the clock is very 

precise).  The less obvious characteristic of this approach is finding how the measurement 

strength increases with duration and with the number of spins/clocks.  

 

Section 4: Spin spacetime censorship for photons 

 

In this section, we present an analogue to the spin gedanken experiment that applies to 

massless particles with spin, such as photons with polarizations. Photons can be entangled 

through their polarizations, for example, entanglement of the vertical (V ) and horizontal ( H ) 

polarization according to   2HV VH . To explain such a gedanken experiment, recall 

that according to the EMFE, photons that are linearly polarized induce (very) weak 

gravitational pp-waves8 with (vertical-horizontal) polarization relative to the photon 
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polarization state (thus linearly polarized photons at ±450 induce a polarized mode of 

gravitational pp-wave at ±450). It therefore follows that if Alice projects her photon to a specific 

linearly polarized state, then Bob can (in theory) measure the gravitational wave induced by 

his photon to determine the induced polarization state. From a classical point of view, by 

measuring gravity waves, Bob can determine whether his photon is linearly polarized in one of 

(00,900) linear polarization states or whether it is linearly polarized in one of the (+450,-450) 

states. Again, if Alice is sufficiently far, this clearly violates relativistic causality. Altogether, 

we expect there to be spin censorship principles for any spin, not only ½. 

 

Section 5: Attempts to explain the gedanken experiment results with classical 

speculative approaches 

 

Additive auxiliary tensor 

One could attempt to realize a spin-spacetime censorship mechanism, by adding an 

auxiliary aspherical spin-dependent stress-energy tensor that would cancel the aspherical part 

of the Maxwell stress-energy tensor. With this additional term, the spin-spacetime censorship 

is realized by construction for each particle. Next, one can imagine what happens if there are 

many particles (each with its own additional auxiliary stress energy tensor). Naturally, one 

would assume that these additional auxiliary stress energy tensors add up together (yielding a 

total tensor which, in contrast to the Maxwell tensor, is at most linearly proportional to the 

number of particles). This approach seems rather ad hoc, assuming a yet unknown stress energy 

tensor that somehow accompanies the ordinary Maxwell stress energy tensor, but it might find 

justification from other perspectives. 

 

Electric dipole 

Other censorship mechanisms may seem appealing at first but prove to be flawed. For 

example, one might suggest that the looked-for electron electric dipole9,10 can eliminate the 
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aspherical parts of the stress-energy tensor created by the spin magnetic dipole. Indeed, the 

standard model predicts a non-zero electron electric dipole moment9,10, whose value has not 

been found yet. However, the state-of-the-art upper bound on the electron’s electric dipole 

moment found experimentally11 is too small to compensate for an aspherical spacetime 

curvature created by the much larger electron dipole moment. 

 

Electron rotation (classical spin) 

Another candidate for a censorship mechanism is based on attributing a different internal 

rotation rate (classical “spin”) to the electron, so it bends spacetime in an aspherical way that 

cancels out the effect of the electron magnetic dipole moment. However, one can show that 

such a rotation cannot compensate for the asphericity arising due to the spatial extent of the 

magnetic field, unless the electron is taken to have an extended mass/charge distribution. Such 

an approach would corroborate past attempts to treat the electron as a Kerr-Newman black hole 

that has a rotation rate and a spin consistent with each other. For example, Carter showed12 that 

a constant classical angular momentum of 2  gives rise to magnetic moment similar to that 

of the electron spin (see also13). Trying now to alter the rotation rate to ensure a spherically 

symmetric spacetime curvature would harm this essential consistency. When exploring these 

models, it is worth noting that they have been shown to suffer from a naked singularity14 and 

closed timelike curves14. 

 

However, a relatively new ghost-free approach to gravity, known as infinite derivative 

gravity15,16, can overcome this problematic ring singularity. In such a non-local theory, the 

gedanken experiment as a whole, and entanglement in particular, would have to be carefully 

analyzed before conclusions can be made. 
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Section 6: Revisiting non-commutative spacetime geometry and other quantum 

approaches that seem to be challenged  

 

In this section, we revisit the proposed censorship mechanism of non-commutative 

geometry of spacetime mentioned in the main text. We can introduce a generalization of our 

gedanken experiment, which seems to prove that this mechanism cannot maintain causality for 

all possible setups, of the gedanken experiment: The signaling protocol between Alice and Bob 

can be performed with many pairs of entangled particles (used simultaneously and measured 

by Alice with a single Stern-Gerlach device), while Bob measures each of his particles 

separately with two clocks per particle (so that the two clocks are positioned symmetrically at 

locations ˆL n  with respect to the spin-½ particle). Bob also locates his clocks at different n̂  

orientations around each particle. Again, he can then compare the clocks times and determine 

that the clocks in the ˆx  orientation, are faster or slower than the clocks placed in the ˆy  

axes orientation. Now since there is one clock per particle, Bob can separate his particles 

(sufficiently far apart) to prevent any possible interference between the different time 

measurements. This generalized gedanken experiment shows that mutual influence between 

different clocks cannot be given as a reason to resolve the paradox, which appears to challenge 

non-commutative geometry of spacetime as a censorship mechanism. Other possible 

approaches can still be combined with a non-commutative geometrical model in an attempt to 

maintain relativistic causality in our gedanken experiment. 

 

Another approach for maintaining relativistic causality (in our gedanken experiment) could 

be based on coupling the wave equations of the electron to those of the gravitational potential: 

adding the gravitational potential (derived via the Poisson equation with the electron’s mass 

density as a source) to the electron quantum wave equation (e.g., the Newton-Schrodinger 

equation and its relativistic generalizations). We did not consider this type of censorship 
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candidates because they were shown, alongside with other nonlinear modifications of the 

Schrodinger equation, to allow signaling17. 

 

Section 7: The Kerr–Newman metric in classical gravity 

 

This section recalls the aspherical solution of the EMFE for an electron with a spin - For a 

comprehensive discussion of this topic see18. An exact electro-vacuum solution can be 

expressed in the Boyer–Lindquist coordinates , , ,t r     

(
2 2 sin cosx r a    , 

2 2 sin siny r a    , cosz r  ) with the spacetime metric  
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. It should 

be noted that for all known spin-1/2 particles the Kerr–Newman metric leads to a naked 

singularity and to closed time-like curves20. The radius of this ring singularity is 
2

ar
mc

 , 

which is 1.93×10-13[m] for an electron. To avoid this ring singularity and other UV problems, 

Biswas et al.21 have suggested a higher derivative covariant generalization of general relativity, 

which could be applied to our gedanken experiment as well. Other researchers have suggested 

different models for spin-1/2 particles (see e.g.,22). 

Another aspect of the Kerr-Newmann spacetime is that it predicts the electric dipole 

moment of the electron to be zero (the expectations for a nonzero electron dipole moment are 

related to QED). However, we know that higher, extremely tiny, but non-zero even-multipoles 
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are expected to exist in Kerr-Newmann spacetime. No such multipoles have been observed so 

far in experiments. There is a rich discussion in the literature about suitable modifications and 

perhaps an internal structure22-29 that could make these multipoles much smaller, so to become 

consistent with current experiments. In either case, the higher multipoles would not prevent the 

break of the spacetime spherical symmetry at the heart of our gedanken experiment. 

Consequently, our work show that even generalized version of the Kerr-Newmann spacetime 

cannot model our gedanken experiment without a causality paradox. It is intriguing that 

quantum information considerations have such consequences on a basic problem in (classical) 

general relativity.  

 

Section 8: Perturbative approach with linearized quantum gravity 

 

In this section, we examine the gedanken experiment from the perspective of linearized 

quantum gravity (two recent accounts appear in30,31), where gravitons emerge through second 

quantization of a linearized perturbation to the metric. The inherently relativistic dynamics of 

these second-quantized linearized gravitational fields may seem to automatically solve the 

issues of causality (and retardation) in a manner similar to the case of quantum electrodynamics 

(QED). That is, in the same way that QED prevents measuring the spin with photons, linearized 

quantum gravity could be expected to prevent measuring the spin with gravitons.  

In this approach, we analyze the spin coupling to spacetime by considering a linearized 

theory, where basic concepts that are familiar from flat space, such as angular momentum and 

dipole moment, carry over to curved spacetime32.These concepts are needed to model our 

gedanken experiment. Therefore, one would naturally raise the question of whether linearized 

quantum gravity could model our gedanken experiment with no causality paradox.  
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To avoid the paradox, a specific mechanism is needed in linearized quantum gravity: one 

that will prevent Bob from inferring the axis and direction of the spin with his clocks. However, 

a few difficulties are encountered.  

(1) There seem to be some core differences between QED and linearized quantum gravity (see 

also Appendix section 1), related to the different ways these theories couple to spin. Within 

the former, the scattering amplitude typically depends on the spin of the fermions (i.e. 

before taking the customary average of initial spins and sum of the final spins). In contrast, 

within the latter, it is unclear how to model the scattering by a spin (e.g., would scattering 

off the gravitational potential created by the spin depend on the entire state of the spin, or 

only its axis? and if so then how?).  

(2) The literature seems to mostly analyze scenarios where the sources of the fields are 

classical30,31, while the non-commutativity of spin components in our gedanken experiment 

makes it inherently quantum. Therefore, a quantum theory of linearized gravity with non-

classical sources is needed.  

(3) It is possible to use the ADM formalism and the Wheeler-DeWitt equation in its linearized 

form to describe the way in which spin sources gravity. However, in Appendix section 4 

we proved that this approach fails (unless we assume that spin and spacetime are 

completely decoupled).  

(4) Even in the case of a theory that treats a non-classical source, it seems that for preserving 

the total angular momentum, simple diagrams would not suffice: The graviton has spin 2, 

while the electron has spin ½ and thus coupling them seems to invoke multiple mediators 

(both photons and gravitons). Such a multi-particle interaction seems to require nonlinear 

interactions (i.e. vertices involving an electron, a photon and a graviton), which go beyond 

the scope of linearized quantum gravity. Alternatively, we can use higher order diagrams 

(see Fig. S1a) that are, however, diverging (containing at least one loop). There are other 
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possibilities (e.g., Fig. S1b and its inverse) that include processes such as photon emission 

by the spin absorbing a graviton (could be envisioned as radiation from a freely-falling 

electron). However, as of now, such processes are at most speculative. 

 

 

(a)                                                                                          (b)  

 

Figure S1: Feynman diagrams in linearized quantum gravity. (a) High order diagram containing one loop. 

The electron maintains its spin. (b) The electron flips its spin as a result of the interaction, in which it absorbs 

a graviton and emits a photon (possibly describing a spin-flip radiation process by fee-falling in the 

gravitational field). 
  

To conclude, we are not aware of any satisfactory mechanism addressing our gedanken 

experiment within the current theory of linearized quantum gravity. 

 

Section 9: Why a single spin-½ cannot be fully inferred with magnetic 

measurements 

 

This section elaborates on the question of why the spin axis cannot be determined by 

measuring its induced magnetic field. It is the back-action of the quantum spin measurements 

on the spin axis that affects the spin and changes it (unless the measurements are performed 

along the spin axis). It seems plausible that a similar back-action would enable modeling our 

gedanken experiment without a contradiction with causality. We elaborate on this possibility 
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in Appendix section 4 and SI section 8, showing mechanisms of back-action in quantum gravity 

that still result in a contradiction, unlike the case of quantum electrodynamics that we describe 

in this section. 

A measuring apparatus (made of coils, magnets, etc.) that measures a spin does so by 

coupling to the spin – applying on it a magnetic field ˆ 0B Β n  even when spatially separated 

from the spin. The spin-½ state is influenced by this magnetic field. The magnetic moment   

of the spin and the magnetic field ˆBΒ n  determine the spin’s time dependent unitary 

evolution, which is given by the Schrödinger equation according to  

ˆ ˆ ˆ ˆ(
2
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n n n n . The spin-½ evolution is thus given by  
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n n , where ˆ n  are constants that depend on 

initial conditions. Eventually, the state of the system undergoes a decoherence process when 

coupled to macroscopic measuring apparatus, so that its final state is described by the density 

matrix ˆ
ˆ ˆ ˆ ˆp p       n nn n n n , with 

2

ˆ ˆp  n n
 denoting the probability for the 

measurement outcome of  ˆn  and ˆn , respectively. This way, the field axis ˆBΒ n  

determines the possible outcomes of the spin-½ measurement process (either ˆn  or ˆn ).  

Formally, we denote the operator describing the measurement process by 

ˆ
ˆ ˆ ˆ ˆS      n n n n n . This operator is subjected to the well-known commutation 

relations: [ , ] i
x y z

S S S ,  [ , ] i
y z x

S S S ,  [ , ] i
z x y

S S S , as well as to the restriction on inferring 

simultaneously the components , ,
x y z

S S S  of the spin (or equivalently the impossibility of 

inferring simultaneously all the components of  B). 
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Section 10: Measurement of the entire spin state without altering the spin 

 

We have seen that under certain candidate theories of gravity, Bob can measure the axis of 

the spin without altering it. This capability seems to lead to a causality paradox, even without 

finding the entire state of the spin. In this section, we show a simple equivalence between 

measuring the spin axis and measuring the entire spin state. In other words, we show that any 

possibility to measure the spin axis would automatically enable to measure the spin direction, 

finding the only missing bit of information beyond the axis without altering the spin state. The 

direct implication is that finding the spin axis leads to a paradox that is equivalent to violation 

of the “no-cloning” theorem. 

 The idea in short is that once Bob finds the axis of the spin, even without its direction, he 

can place Stern-Gerlach magnets oriented along this axis, and thus find whether the spin is up 

or down without altering its state. Such a Stern-Gerlach test is only possible when Bob knows 

in advance what the axis is. This needed advanced knowledge is why finding the spin axis 

through the clocks leads to the paradox with no-cloning: Bob finds the entire spin state in two 

steps – finding the axis with clocks and the direction with Stern-Gerlach magnets. 

We present this idea in more details with the following explanation. Any state of the form 

z z     can be expressed as a point on the Bloch sphere having the form 

     cos exp s
2

n
2

iz zi     and therefore, there always exists an axis n̂  to which the 

state is parallel ˆz z     n , i.e., proportional up to a phase to ˆn , where  

sin( )cos( ), sin( )sin( ), cos( )x y zn n n      . Now, by symmetrically placing many 

clocks on a sphere Bob can find out that the axis of the spin up to a sign so he knows that it is 

either ˆn  or ˆn  (as in Appendix section 4). Finally, to find out the sign of the spin, Bob 

uses Stern Gerlach magnets so that the measurement axis will be parallel to the ˆn  axis. This 

way, the Stern-Gerlach measurement does not alter the spin state. By determining this last bit 
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of information, whether the state of the spin is ˆn  or ˆn , Bob has the entire state of the 

spin (values of   and   as well as the values of  / exp( ) an
2

ti    ). 
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