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RM 1 Basic formalism of the interaction between comb electrons and a 

photonic mode 
In this section, we derive the formalism for the interaction between a comb electron and a 

general state of a photonic mode, which is used throughout the main text. The initial joint state of 

a photonic mode |𝜓⟩ph and an electron with a wavefunction in the energy representation |𝜓⟩e is: 

|Ψin⟩ = |𝜓⟩e⊗ |𝜓⟩ph. (1) 

The interaction between a free electron and a photonic mode is captured by the scattering matrix 

𝑆 (for more information on the assumptions of this model look at [1-4]): 

𝑆 = 𝐷𝑏𝑔Q = 𝑒𝑔Q𝑏𝑎
†−𝑔Q

∗ 𝑏†𝑎,                                                          (2) 

where 𝑔Q is the coupling constant between the photonic mode and free electrons; 𝑎, 𝑎† are the 

annihilation and creation operators for the photonic mode; 𝑏, 𝑏† are  the operators describing the 

electron translation in energy, which correspond to the emission or absorption of a single photon; 

𝐷𝑥 = exp(𝑥𝑎† − 𝑥∗𝑎) is a coherent displacement operator [5]. The commutation relations for the 

operators are: 

[𝑏, 𝑏†] = 0, [𝑎, 𝑎†] = 1  . (3) 

Let us consider a comb electron (Dirac comb) with an energy difference ℏ𝜔 (Fig. 2a in the 

main text): 

|comb(𝜑)⟩e ∝ ∑ 𝑒𝑖𝜑𝑘|𝐸0 + ℏ𝜔 ⋅ 𝑘⟩e

∞

𝑘=−∞

, (4) 

where 𝜑 ∈ ℝ is a general phase. Such states are eigenfunctions of the electron energy translation 

operators (and the scattering matrix): 

𝑏|comb(𝜑)⟩e = 𝑒
𝑖𝜑|comb(𝜑)⟩e, (5) 

thus proving the equality 𝑆 = 𝐷𝑔Q𝑏 ⟺ 𝐷𝑔Q𝑒𝑖𝜑 [6]. Using this relation, we derive the joint state 

after each interaction of a general photonic state with a comb electron: 
|Ψout⟩ = 𝑆|Ψin⟩ = 𝐷𝑔Q𝑒𝑖𝜑|comb(𝜑)⟩e⊗ |𝜓i⟩ph. (6)  

We can see that the scattering matrix acts as a displacement operator on the photonic mode 

and that the comb electron is an eigenfunction of the scattering matrix 𝑆. Therefore, the photonic 

state and the electron state are separable (i.e., not entangled) after the interaction. For the case of 

an initial photonic mode in a vacuum state, the final state will be a coherent state. It is convenient 

to introduce the following notation:  

𝐷𝑔Q𝑒𝑖𝜑|0⟩ph = |𝑔Q𝑒
𝑖𝜑⟩

ph
, (7) 

where |𝑔Q𝑒
𝑖𝜑⟩

ph
 is a coherent state with an amplitude |𝑔Q| and phase 𝜑.  

Eq. (7) can be generalized to describe emission resulting from any electron using Fourier 

decomposition, which makes it a very strong tool. Any electron can be decomposed to a series (or 
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an integral for the continuous case) over comb electrons, and therefore the final photonic state can 

be written as a sum of coherent states on a circle of radius 𝑔Q: 

|𝜓⟩e = ∑ 𝑐𝑘|comb(𝜙𝑘)⟩e

𝑁

𝑘=−𝑁

, (8) 

while 𝑐𝑘 =
1

√2𝑁+1
∑ 𝑐𝑛𝑒

𝑖(
2𝜋

2𝑁+1
𝑘)𝑛𝑁

𝑛=−𝑁  and 𝜙𝑘 =
2𝜋

2𝑁+1
𝑘. Thus: 

|Ψout⟩ = 𝑆|Ψin⟩ = 𝑆 (|𝜓⟩ph⊗∑ 𝑐𝑘 |comb(𝜙𝑘)⟩e
𝑘

) =∑𝑐𝑘𝐷𝑔Q𝑒𝑖𝜙𝑘
|𝜓⟩ph

𝑘

⊗ |comb(𝜙𝑘)⟩e. (9) 

Eq. (9) gives a general expression for the interaction between an arbitrary photonic state and an 

arbitrarily shaped electron. 

 

RM 2 Creation of cat states 
RM 2.1 Creation of 2-component cat state 

  Let us introduce a comb electron with an energy difference of 𝑁ℏ𝜔 and a  shift in energy by 

𝑚ℏ𝜔: 

|comb𝑁
𝑚⟩e ∝ ∑ |𝐸0 + ℏ𝜔 ⋅ (𝑁𝑘 −𝑚)⟩e

∞

𝑘=−∞

 (10) 

To create a 2-component cat state, we consider a comb electron with an energy difference of 2ℏ𝜔: 

|combeven⟩e = |comb2
0⟩e ∝ ∑ |𝐸0 + ℏ𝜔 ⋅ 2𝑘⟩e

∞

𝑘=−∞

. (11) 

We have two options for the comb electron |comb𝑁=2
m ⟩e, as illustrated in Fig. 2c in the main text. 

The first one is an even comb, as in Eq. (11), and the second one is an odd comb electron: 

|combodd⟩e = |comb2
1⟩e ∝ ∑ |𝐸0 + ℏ𝜔 ⋅ (2𝑘 − 1)⟩e

∞

𝑘=−∞

. (12) 

To create a cat state, the photonic mode is initially prepared in the vacuum state. Here we show 

the explicit calculation for an even comb (starting with the odd comb is equivalent since 𝐸0 is 

defined arbitrarily). Thus, we consider the following initial joint-state: 

|Ψin⟩ = |combeven⟩e⊗ |0⟩ph. (13) 

In order to calculate 𝑆|Ψin⟩, the final state after the interaction, it is convenient to decompose 

the even comb electron into the basis of comb electrons with ℏ𝜔 energy differences and different 

phases (i.e., use the Discrete Fourier Transform according to Eq. (8)). Firstly, we use the general 

comb electron state defined in Eq. (4). Then, we decompose the even and odd combs in the 

following way: 
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{
|combeven⟩e = (|comb(0)⟩e + |comb(𝜋)⟩e)/√2

|combodd⟩e = (|comb(0)⟩e − |comb(𝜋)⟩e)/√2
 . (14) 

Alternatively: 

⇔ {
|comb(0)⟩e = (|combeven⟩e + |combodd⟩e)/√2

|comb(𝜋)⟩e = (|combeven⟩e − |combodd⟩e)/√2
.  (15) 

 

In this new basis, the final joint state after interaction of an even comb electron with a general 

photonic state is calculated by using Eqs. (6,7): 

|Ψout⟩ = 𝑆|Ψin⟩ =
1

√2
(|comb(0)⟩e⊗ |𝑔Q⟩ph +

|comb(𝜋)⟩e⊗ |−𝑔Q⟩ph) =

=
1

2
|combeven⟩e⊗ (|𝑔Q⟩ph + |−𝑔Q

⟩
ph
) +

1

2
|combodd⟩e⊗(|𝑔Q⟩ph − |−𝑔Q

⟩
ph
) . (16)

 

The definition of even and odd cat states is [7]: 

|cateven/odd⟩ph
∝
1

2
(|𝑔Q⟩ph ± |−𝑔Q⟩ph) ,

(17) 

with the plus (minus) sign referring to the even (odd) comb electron.  

We notice that in order to get a cat state in the photonic mode, an electron-energy post-selection 

is necessary. If the electron is traced out, then the photonic mode is left in a mixed cat state: 

𝜌ph =
1

2
(|cateven⟩ph⟨cateven|ph + |catodd⟩ph⟨catodd|ph). (18) 

However, if we post-select the electron with specific energy, then: 

|𝜓f⟩ph = {
|cateven⟩ph, if the energy is even,

|catodd⟩ph, if the energy is odd.
(19) 

In such a way, the electron holds information about the parity of the photons in the photonic mode. 

Therefore, by electron energy post-selection, cat states can be generated in the photonic mode in a 

heralded process.  

 

RM 2.2 Creation of N-component cat states 

After interaction of a |combN
0 ⟩e with a vacuum photonic state, the final state 

is:

|Ψout⟩ = |combN
−𝑘⟩

e
⊗∑ (𝑒

−|𝑔𝑄|
2

2 ∑
(𝑔Q)

𝑁𝑛+𝑘

√(𝑁𝑛+𝑘)!
|𝑁𝑛 + 𝑘⟩ph

Fock
𝑛 )𝑁−1

𝑘=0 , (20) 

where the 𝑁 factor appears since this electron can be written as a superposition of 𝑁 comb electrons 

with different phases. |𝑁⟩ph
Fock denotes the 𝑁th Fock number state. We identify the photonic state 

as the 𝑁-component cat state |cat𝑁
𝑘 ⟩
ph

: 
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|cat𝑁
𝑘 ⟩
ph
≡
1

𝑐𝑁
𝑘 ∑ 𝑒−𝑖2𝜋

𝑘𝑚
𝑁 |𝑒𝑖2𝜋

𝑚
𝑁𝑔Q⟩

ph

𝑁−1

𝑚=0

=
𝑁

𝑐𝑁
𝑘 𝑒

−|𝑔Q|
2

2 ∑
(𝑔Q)

𝑁𝑛+𝑘

√(𝑁𝑛 + 𝑘)!
|𝑁𝑛 + 𝑘⟩ph

Fock

𝑛

, (21) 

where this set of 𝑁 states is called the 𝑁-component cat state set [8], defined as |cat𝑁
𝑘 ⟩
ph

. The 

index 𝑘 defines the particular state from Eq. (19). 𝑐𝑁
𝑘  is the normalization factor of the 𝑁-componen 

cat states (Eq. (21)).  Thus, finally, we get: 

|Ψout⟩ =
1

𝑁
∑ 𝑐𝑁

𝑘 |combN
𝑚−𝑘⟩

e
⊗ |cat𝑁

𝑘 ⟩
ph
.

𝑁−1

𝑘=0

(22) 

Hence, if we want to obtain |cat𝑁
𝑘 ⟩, we need to measure the energy 𝐸0 + ℏ𝜔 ⋅ (𝑁𝑚 − 𝑘), where 

𝑚 is an integer. In the limit of a mono-energetic electron (𝑁 ≫ 1), the electron energies are 

entangled to photonic Fock-states [3, 6].  

 

RM 2.3 Post-selection probability for cat states 
The probability of post-selecting the different cat states is an important property. Let us first 

calculate the probabilities to post-select a two-component cat state. From Eq. (16), one can notice 

that the probability of post-selecting even energy is 𝑃(even) = ‖(|𝑔Q⟩ph + |−𝑔Q⟩ph) /2‖
2

=

(1 + 𝑒−2|𝑔Q|
2

) /2 and the probability of post-selecting odd energy is 𝑃(odd) = ‖(|𝑔Q⟩ph −

|−𝑔Q⟩ph) /2‖
2

= (1 − 𝑒−2|𝑔Q|
2

) /2. According to these equations, for a small coupling constant 

|𝑔Q| ≪ 1, the probability to get an even cat state will be ~1 while the displacements will be ~0.  

Following Eq. (22), the probability of post-selecting a specific N-component cat state |cat𝑁
𝑘 ⟩ 

is: 

𝑃𝑁
𝑘 =

1

𝑁2
|𝑐𝑁
𝑘 |
2
=

1

𝑁2
‖∑ 𝑒−𝑖2𝜋

𝑘𝑚
𝑁 |𝑒𝑖2𝜋

𝑚
𝑁𝑔Q⟩

ph

𝑁−1

𝑚=0

‖

2

. (23) 

We can see that for all 𝑁, the probability 𝑃𝑁
𝑘 is maximal for 𝑘 = 0. Moreover 𝑃𝑁

𝑘 goes down 

monotonically with k. 

 

RM 3 1D and 2D grids of coherent states 
Here we propose a protocol for preparing 1D and 2D grids of coherent states using multiple 

comb electrons interacting with the same photonic mode. 

RM 3.1 Creating a 1D grid of coherent states- final state analytical expression  
After an interaction with an even comb electron, the resulting joint state is: 

|Ψout⟩ =
1

2
|combeven⟩e⊗ (𝐷𝑔Q + 𝐷−𝑔Q)|𝜓i⟩ph +

1

2
|combodd⟩e⊗ (𝐷𝑔Q − 𝐷−𝑔Q)|𝜓i⟩ph, (24) 

Thus, after post-selecting even electron energy, the final photonic state is: 
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|𝜓f⟩ph ∝ (𝐷𝑔Q + 𝐷−𝑔Q)|𝜓i⟩ph. (25) 

After post-selecting odd electron energy, the photonic state is: 

|𝜓f⟩ph ∝ (𝐷𝑔Q − 𝐷−𝑔Q)|𝜓i⟩ph. (26) 

Therefore, to calculate the photonic state after multiple even comb-electron interactions, we 

need to multiply the photonic state by the sum (i.e., Eq. (25)) or difference (i.e., Eq. (26)) of the 

displacement operators, depending on the post-selected energy. For the case of an initial odd comb 

electron, the photonic states that are coupled to the electron’s state will be replaced with each other 

(up to a global phase), replacing Eqs. (25, 26). Using Eqs. (25, 26), we derive the final photonic 

state after many interactions with even comb electrons.  

After 𝑚 + 𝑛 cycles of comb electron-photon interaction with a coupling constant 𝑔Q, and 

provided that we measured (post-selected) 𝑚 times even energies and 𝑛 times odd energies, the 

resulting photonic state is: 

|𝜓f⟩ph ∝ (𝐷𝑔Q + 𝐷−𝑔Q)
𝑚

(𝐷𝑔Q − 𝐷−𝑔Q)
𝑛
|𝜓i⟩ph. (27) 

Using the displacement operator’s property 𝐷𝛼𝐷𝛽 = 𝑒
1

2
(𝛼𝛽∗−𝛼∗𝛽)𝐷𝛼+𝛽,  one can notice that the 

order of post-selections does not change the final state. Using the binomial theorem, Eq. (27) can 

be further simplified: 

|𝜓f⟩ph = |𝑁𝜓|
−1/2

∑∑(
𝑚
𝛼
)(
𝑛
𝛽) (−1)

𝛽𝐷𝑔Q(𝑚+𝑛−2𝛽−2𝛼)|𝜓i⟩ph

𝑛

𝛽=0

𝑚

𝛼=0

, (28) 

where |𝑁𝜓| is a normalization factor and (
𝑚
𝛼
) =

𝑚!

𝛼!(𝑚−𝛼)!
 are the binomial coefficients. 

RM 3.2 Creating a 2D coherent grid - final state analytical expression  
In general, the coupling constant has a phase, which can be controlled by controlling the phase 

of the shaping laser in the scheme presented in Fig. 1a in the main text. A general coupling constant 

can be written as 𝑔Q = 𝑒𝑖⋅arg(𝑔Q)|𝑔Q|. To generate a 2D coherent grid, we use even combs with 

different relative phases. Let us calculate the simplest case, a rectangular grid with two orthogonal 

coupling constants 𝑔Q1 = 𝑖|𝑔Q1|  and 𝑔Q2 = |𝑔Q2|. First, we create a 1D coherent grid by 

interactions with 𝑖|𝑔Q1|, and afterward, interactions of coupling constant |𝑔Q2| to expand the 1D 

grid to a 2D grid. 

We consider 𝑘 + 𝑙 cycles of comb electron-photon interaction with coupling constant 𝑖|𝑔𝑄1|, 

followed by measurements post-selecting even/odd energies 𝑘/𝑙 times, respectively. Afterward, 

we consider 𝑚 + 𝑛 cycles of comb electron-photon interaction with coupling constant |𝑔Q2|, 

followed by measurements post-selecting even/odd energies 𝑚/𝑛 times, respectively. The resulting 

final photonic state is calculated using the approach presented in RM 3.1: 

|𝜓f⟩ph ∝ (𝐷|𝑔Q2| − 𝐷−|𝑔Q2|)
𝑛

(𝐷|𝑔Q2| + 𝐷−|𝑔Q2|)
𝑚

(𝐷𝑖|𝑔Q1| − 𝐷−𝑖|𝑔Q1|)
𝑙

(𝐷𝑖|𝑔Q1| + 𝐷−𝑖|𝑔Q1|)
𝑘
|0⟩ph. (29) 

Using the binomial theorem and Eq. (28), the final photonic state is: 
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|𝑁𝜓|
−1/2

∑∑∑∑(
𝑚
𝛼
) (
𝑛
𝛽) (

𝑘
𝛾
) (
𝑙
𝛿
) (−1)𝛽+𝛿𝐷|𝑔Q2|(2𝛼+2𝛽−𝑚−𝑛)𝐷𝑖|𝑔Q1|(2𝛿+2𝛾−𝑘−𝑙)

𝑙

𝛿=0

𝑘

𝛾=0

𝑛

𝛽=0

|0⟩ph,

𝑚

𝛼=0

 (30) 

This equation represents a rectangular grid of coherent states. For example, if all the post-selected 

energies are even, i.e., 𝑛 = 𝑙 = 0, then the state is a rectangular grid state with positive coefficients 

on the complex plane. The grid spacing in the imaginary direction is 2|𝑔Q1| and in the real direction 

is 2|𝑔𝑄2|. Choosing odd energies will add local phases to the coefficients of the coherent states, 

from the element (−1)𝛽+𝛿. 

To create a general grid of coherent states (not only a rectangle shape) one should use general 

complex coupling constants 𝑔̃Q1, 𝑔̃Q2. The amplitudes of 𝑔̃Q1, 𝑔̃Q2 define the distances between the 

points in each axis, and their phases define the angles of the grid. For example, in Eq. (30), the 

relative phase of 𝑔Q1 and 𝑔Q2 is 
𝜋

2
 , which creates a rectangular grid. For the general case: 

|𝜓⟩ph ∝ ∑∑∑∑(
𝑚
𝛼
)(
𝑛
𝛽) (

𝑘
𝛾
) (
𝑙
𝛿
) (−1)𝛽+𝛿𝐷𝑔̃Q2(2𝛼+2𝛽−𝑚−𝑛)𝐷𝑔̃Q1(2𝛿+2𝛾−𝑘−𝑙)

𝑙

𝛿=0

𝑘

𝛾=0

𝑛

𝛽=0

|0⟩.

𝑚

𝛼=0

(31)  

In order to examine the state in Eq. (31), we further express it in terms of the 𝑥 and 

𝑝 quadratures. We use the following formulas, connecting the displacement operator to the 

transition in position and momentum operators [9]: 

𝐷𝑐 = 𝑒
−𝑖√2𝑐𝑝, 𝐷𝑖𝑐 = 𝑒

𝑖√2𝑐𝑥̂, (32) 

where 𝑐 is a real parameter. Using these relations, the final state can be calculated in the coordinate 

and momentum representation. Let us use Eq. (32) to calculate the quadrature representation in 𝑥 

and 𝑝 coordinates representations of Eq. (31): 

⟨𝑥|𝜓⟩ph ∝ ∑ (
𝑚
𝛼
)(
𝑛
𝛽) (

𝑘
𝛾
) (
𝑙
𝛿
) (−1)𝛽+𝛿𝑒𝑖(𝐵(𝐴+𝐶)+𝐶(𝐵+𝐷))𝑒𝑖√2

(𝐵+𝐷)(𝑥−√2(𝐴+𝐶))𝑒−
1
2
(𝑥−√2(𝐴+𝐶))

2

𝛼,𝛽,𝛾,𝛿

, (33) 

⟨𝑝|𝜓⟩ph ∝ ∑ (
𝑚
𝛼
)(
𝑛
𝛽) (

𝑘
𝛾
) (
𝑙
𝛿
) (−1)𝛽+𝛿𝑒𝑖(𝐵(𝐴+𝐶)+𝐶(𝐵+𝐷))𝑒−𝑖√2(𝐴+𝐶)𝑝𝑒−

1
2
(𝑝−√2(𝐵+𝐷))

2

𝛼,𝛽,𝛾,𝛿

, (34) 

while 𝐴, 𝐵, 𝐶, 𝐷 in Eq. (33,34) are defined as:  

𝐴 = 𝑅𝑒{𝑔̃Q2}(2𝛼 + 2𝛽 −𝑚 − 𝑛),                   𝐵 = 𝐼𝑚{𝑔̃Q2}(2𝛼 + 2𝛽 −𝑚 − 𝑛), 

𝐶 = 𝑅𝑒{𝑔̃Q1}(2𝛿 + 2𝛾 − 𝑘 − 𝑙),                      𝐷 = 𝐼𝑚{𝑔̃Q1}(2𝛿 + 2𝛾 − 𝑘 − 𝑙). 

 

One can use the |comb4
0⟩e electron as well, to create a 2D coherent lattice with fewer electrons. 

According to Eq. (112), after the interaction of a |comb4
0⟩e and a photonic mode general state, the 

final state is: 

|𝜓⟩final = 𝑆𝑔Q|comb4
0⟩e|𝜓⟩ph =

1

4
(

|comb(0)⟩e𝐷𝑔Q + |comb(
𝜋

2
)⟩
e
𝐷𝑖𝑔Q

+|comb(𝜋)⟩e𝐷−𝑔Q + |comb (
3𝜋

2
)⟩ 𝐷−𝑖𝑔Q

) |𝜓⟩ph = 
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=
1

4

(

 
 
 
 

|comb4
0⟩e(𝐷𝑔Q + 𝐷𝑖𝑔Q +𝐷−𝑔Q + 𝐷−𝑖𝑔Q)

+|comb4
1⟩e(𝐷𝑔Q + 𝑖𝐷𝑖𝑔Q − 𝐷−𝑔Q − 𝑖𝐷−𝑖𝑔Q)

+|comb4
2⟩e(𝐷𝑔Q − 𝐷𝑖𝑔Q + 𝐷−𝑔Q − 𝐷−𝑖𝑔Q)

+|comb4
3⟩e(𝐷𝑔Q − 𝑖𝐷𝑖𝑔Q − 𝐷−𝑔Q + 𝑖𝐷−𝑖𝑔Q))

 
 
 
 

|𝜓⟩ph (35) 

After post-selecting the state |comb4
0⟩e 𝑚 times, the final photonic state is: 

|𝜓final⟩ph = |𝑁𝜓|
−
1
2 (𝐷𝑔Q +𝐷−𝑔Q +𝐷𝑖𝑔Q +𝐷−𝑖𝑔Q)

𝑚
|𝜓⟩ph = 

|𝑁𝜓|
−
1
2∑∑ ∑ (

𝑚
𝛼
) (
𝛼
𝛽) (

𝑚 − 𝛼
𝛾 )

𝑚−𝛼

𝛾=0

𝛼

𝛽=0

𝑒−𝑖𝑔Q
2 (2𝛽−𝛼)(2𝛾+𝛼−𝑚)𝐷𝑔Q(2𝛽−𝛼)+𝑖𝑔Q(2𝛾+𝛼−𝑚)|𝜓i⟩ph

𝑚

𝛼=0

 (36) 

Let us use Eq. (32) to calculate the quadrature representation in 𝑥 and 𝑝 coordinates representations 

of Eq. (36): 

⟨𝑥|𝜓⟩ph ∝ ∑∑ ∑ (
𝑚
𝛼
) (
𝛼
𝛽) (

𝑚 − 𝛼
𝛾 )

𝑚−𝛼

𝛾=0

𝛼

𝛽=0

𝑒𝑖(𝐵(𝐴+𝐶)+𝐶(𝐵+𝐷))𝑒𝑖√2
(𝐵+𝐷)(𝑥−√2(𝐴+𝐶))𝑒−

1
2
(𝑥−√2(𝐴+𝐶))

2

,

𝑚

𝛼=0

 (37) 

⟨𝑝|𝜓⟩ph ∝ ∑∑ ∑ (
𝑚
𝛼
)(
𝛼
𝛽) (

𝑚 − 𝛼
𝛾 )

𝑚−𝛼

𝛾=0

𝛼

𝛽=0

𝑒𝑖(𝐵(𝐴+𝐶)+𝐶(𝐵+𝐷))𝑒−𝑖√2(𝐴+𝐶)𝑝𝑒−
1
2
(𝑝−√2(𝐵+𝐷))

2
𝑚

𝛼=0

, (38) 

while we defined: 

𝐴 = 𝑅𝑒{𝑔Q}(2𝛽 − 𝛼),                                 𝐵 = 𝐼𝑚{𝑔Q}(2𝛽 − 𝛼), 

𝐶 = 𝑅𝑒{𝑖𝑔Q}(2𝛾 + 𝛼 −𝑚),                      𝐷 = 𝐼𝑚{𝑖𝑔Q}(2𝛾 + 𝛼 −𝑚). 

 

As described in the main paper, choosing 𝑔𝑄 = √𝜋/2 will create a magic state. In addition, post-

selecting the state |comb4
2⟩e 𝑚 times will also create a magic state. To represent the final state in 

this case, we just multiply the elements in the sum in Eq. (36) by (−1)𝑚−𝛼. 

 

RM 3.3 Creating a GKP state starting from a vacuum state 
As described in the main text, the ideal GKP state can be expended as a superposition of 

coherent states [10, 11]: 

|𝜇⟩ph
GKP ∝ ∑ 𝐷

√
𝜋
2
(2α−𝜇)

𝐷
𝑖√
𝜋
2
𝛽
|0⟩ph

𝛼,𝛽∈ℤ

, (39) 

where 𝜇 = 0 and 𝜇 = 1 define the logical GKP qubits |0⟩ph
GKP and |1⟩ph

GKP respectively. 

To engineer the process of preparing an approximate rectangular GKP state, we take Eq. (30) 

and choose the following parameters: 

𝑔Q1 = 𝑖√
𝜋

8
, 𝑔Q2 = √

𝜋

2
, 𝑛 = 𝑙 = 0, 𝑘 = 4𝑚, (40) 
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meaning we induce 𝑘 = 4𝑚 interactions with coupling constant 𝑖√𝜋/8 to create a squeezed 

vacuum state and afterward induce another 𝑚 interactions with coupling constant √𝜋/2 to create 

the approximated GKP state. In addition, we assume that all the post-selected energies are even. 

We substitute Eq. (40) into the general 2D grid expression from Eq. (31) and get: 

|GKP′⟩ph
𝑚 ∝ ∑∑(

𝑚
𝛼
) (
4𝑚
𝛽
)𝐷

√
𝜋
2
(2α−𝑚)

𝐷
𝑖√
𝜋
2
(𝛽−2𝑚)

4𝑚

𝛽=0

|0⟩ph

𝑚

𝛼=0

. (41) 

Compared to Eq. (39), we see that we get a logical GKP qubit |0⟩ph
GKP or |1⟩ph

GKPdepending on 

whether 𝑚 is even or odd, respectively. Setting 𝑔𝑄1, 𝑔𝑄2, 𝑘 according to Eq. (40) in Eq. (33, 34), 

we write |GKP′⟩ph in the quadrature representation: 

GKP′(𝑥) ∝ ∑ (
𝑚
𝛼
)24𝑚 cos4𝑚(√𝜋(𝑥 + √𝜋𝑚)/2) 𝑒

−
1
2
(𝑥−√𝜋(2𝛼−𝑚))

2
.

𝑚

𝛼=0

 (42) 

GKP′(𝑝) ∝ ∑ (
4𝑚
𝛽
)2𝑚 cos𝑚(√𝜋𝑝) 𝑒

−
1
2
(𝑝−√𝜋(𝛽−2𝑚))

2
4𝑚

𝛽=0

. (43) 

We notice that for this special case, the peaks of the cos𝑚(√𝜋𝑝) term have the same frequency 

and phase as the Gaussian envelopes exp (−
1

2
(𝑝 − √𝜋(𝛽 − 2𝑚))

2

. For this case, we get a comb-

like function. An important parameter of such approximated GKP states is the squeezing 

parameter. We calculate the squeezing parameter of |GKP′⟩ph, by considering the probability 

distribution around the peak, which is the same for all peaks. For the 𝑥-quadrature, the probability 

around each peak:  

𝑃(𝑥) ∝ cos8𝑚(√𝜋(𝑥+ √𝜋𝑚)/2) 𝑒−(𝑥+√𝜋𝑚)
2

~𝑒−(1+𝜋𝑚)(𝑥+√𝜋𝑚)
2

 (44) 

Therefore, the variance in the 𝑥-quadrature and in the p- quadrature is: 

Δ𝑥
2 = Δ𝑝

2 ≅
1

1+𝜋𝑚
. (45)

To get ~10dB squeezing, defined by 𝑆dB = −10 log10 Δ
2 [12], we need to choose 𝑚 = 3. 

Therefore, 12 interactions with 𝑔Q1 = 𝑖√𝜋/8 and 3 interactions with 𝑔Q2 = √𝜋/2 will create the 

desirable GKP state with 10dB squeezing. 

RM 3.4 Creating a GKP state starting from a squeezed vacuum state 
Another approach for creating a GKP state is to consider the interaction of even comb electrons 

with a squeezed vacuum state inside the photonic mode [13]. Starting from a squeezed vacuum 

state will shorten the number of electrons required for 10dB squeezing, and thus increase the 

probability of a GKP preparation. After having 𝑚 interactions with even post-selections, the final 

state is:  

|𝜓⟩ph ∝ ∑(
𝑚
𝛼
)𝐷𝑔Q(2𝛼−𝑚)𝑆(𝜉)|0⟩ph

𝑚

𝛼=0

, (46) 
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where 𝑆(𝜉) = 𝑒
1

2
(𝜉∗𝑎̂2−𝜉𝑎†

2
)
 is the squeezing operator and 𝜉 = 𝑟𝑒𝑖𝜃 is the squeezing parameter 

[5]. For 𝑔Q = √𝜋/2, 𝜃 = 0, a rectangle GKP is prepared, and for 𝑔Q = √𝜋/√3, 𝜃 = 𝜋/6  a 

hexagonal GKP is prepared [11]. Let us calculate this state in terms of 𝑥 and 𝑝 quadratures. We 

use [14] to write for a general 𝑔Q ≔ 𝑔R + 𝑖𝑔I the following: 

 ⟨𝑥|𝐷(𝑔R+𝑖𝑔𝐼)(2𝛼−𝑚)|𝑞⟩ = 𝑒
𝑖𝑔R𝑔I(2𝛼−𝑚)

2
⟨𝑥 − √2𝑔R(2𝛼 − 𝑚)|𝐷𝑖𝑔I(2𝛼−𝑚)|𝑞⟩ =

= 𝑒𝑖𝑔R𝑔I(2𝛼−𝑚)
2
𝑒
𝑖√2𝑔I(2α−𝑚)(𝑥−√2𝑔R(2𝛼−𝑚))𝛿 (𝑞 − (𝑥 − √2𝑔R(2α − 𝑚))) , (47)

 

⟨𝑥|𝑆|0⟩ ∝ 𝑒
−
𝑥2

2
(
1+𝑒2𝑖𝜃 tanh𝑟

1−𝑒2𝑖𝜃 tanh𝑟
)
, (48)

 

⟨𝑝|𝑆|0⟩ ∝ 𝑒
−
𝑝2

2
(
1−𝑒2𝑖𝜃 tanh𝑟

1+𝑒2𝑖𝜃 tanh𝑟
)
√
1− 𝑒2𝑖𝜙 tanh 𝑟

1 + 𝑒2𝑖𝜙 tanh 𝑟
. (49) 

Thus, according to the Eq. (47-49), for a general 𝑔𝑄 ≔ 𝑔R + 𝑖𝑔I, the 𝑥-representation is: 

𝜓(𝑥) ∝ ∑(
𝑚
𝛼
) ⟨𝑥|𝐷(𝑔R+𝑖𝑔I)(2𝛼−𝑚)∫𝑑𝑞|𝑞⟩⟨𝑞| 𝑆(𝑟, 𝜃)|0⟩

𝑚

α=0

=

=∑(
𝑚
α
) 𝑒𝑖𝑔R𝑔I(2𝛼−𝑚)

2
𝑒
𝑖√2𝑔I(2α−𝑚)(𝑥−√2𝑔R(2α−𝑚))⟨𝑥 − √2𝑔R(2α − 𝑚)|𝑆|0⟩

𝑚

α=0

. (50)

 

Using Eq. (48), one can write: 

𝜓(𝑥) ∝ ∑(
𝑚
𝛼
) 𝑒𝑖𝑔R𝑔I(2𝛼−𝑚)

2
𝑒𝑖√2𝑔I

(2𝛼−𝑚)(𝑥−√2𝑔R(2α−𝑚))𝑒
−
1
2
(𝑥−√2𝑔R(2𝛼−𝑚))

2
(
1+𝑒2𝑖𝜃 tanh𝑟

1−𝑒2𝑖𝜃 tanh𝑟
)

𝑚

𝛼=0

. (51) 

𝑝-representation is: 

𝜓(𝑝) ∝ ∑(
𝑚
𝛼
) ⟨𝑝|𝐷𝑔Q(2𝛼−𝑚)∫𝑑𝜋|𝜋⟩⟨𝜋| 𝑆|0⟩

𝑚

α=0

=

∑(
𝑚
α
)𝑒𝑖𝑔R𝑔I(2𝛼−𝑚)

2
𝑒−𝑖√2𝑔R(2α−𝑚)𝑝⟨𝑝 − √2𝑔I(2α − 𝑚)|𝑆|0⟩

𝑚

α=0

. (52)

 

Using Eqs. (49, 52), we write: 

𝜓(𝑝) ∝ ∑(
𝑚
𝛼
)𝑒𝑖𝑔R𝑔I(2𝛼−𝑚)

2
𝑒−𝑖√2𝑔R(2𝛼−𝑚)𝑝

𝑚

α=0

𝑒
−
(𝑝−√2𝑔I(2𝛼−𝑚))

2

2
(
1−𝑒2𝑖𝜃 tanh𝑟

1+𝑒2𝑖𝜃 tanh𝑟
)
. (53) 

For a real 𝑔𝑄, one can use Eq. (51) to write: 

GKP′′(𝑥) ∝ ∑(
𝑚
𝛼
) 𝑒

−
1
2
(𝑥−√2𝑔Q(2α−𝑚))

2
(
1+𝑒2𝑖𝜃 tanh𝑟

1−𝑒2𝑖𝜃 tanh𝑟
)

𝑚

𝛼=0

, (54) 
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GKP′′(𝑝) ∝ 𝑒
−
𝑝2

2
(
1−𝑒2𝑖𝜃 tanh𝑟

1+𝑒2𝑖𝜃 tanh𝑟
)
(1 + 𝑒−2𝑖𝑝√2𝑔Q)

𝑚

 . (55) 

Similar to the case of creating GKP from a vacuum state, we will calculate the squeezing of 

the final state. The state probability distribution in the 𝑥-representation is the following: 

𝑃(𝑥)~ |exp (−
1

2
(
1+𝑒2𝑖𝜃 tanh𝑟

1−𝑒2𝑖𝜃 tanh𝑟
) 𝑥2)|

2

. Therefore, the variance is Δ𝑥
2 = Re (

1−𝑒2𝑖𝜃 tanh 𝑟

1+𝑒2𝑖𝜃 tanh 𝑟
).  

In the 𝑝-direction: 𝑃(𝑝)~ |𝑒
−
1

2
𝑝2(

1−𝑒2𝑖𝜃 tanh𝑟

1+𝑒2𝑖𝜃 tanh𝑟
)
𝑒−𝑚𝑝

2𝑔Q
2 |

2

. Therefore, the variance is  

Δ𝑝
2 = Re (

1−𝑒2𝑖𝜃 tanh𝑟

1+𝑒2𝑖𝜃 tanh𝑟
+ 2𝑔Q

2𝑚)
−1

  while 10dB squeezing requires Δ2 = 1/10. 

Let us calculate the squeezing parameters for a rectangular GKP, with 𝜃 = 0 and 

 𝑔𝑄 = √𝜋/2 . In this case, 𝑆dB = 10 log10(𝑒
−2𝑟 + 𝜋𝑚). To get 10dB in the 𝑥-axis, 𝑟 = 1.1513 is 

needed. In the 𝑝-axis, 𝑚 = 3.15 is needed, while 𝑚 is an integer. Thus, one needs to choose 𝑚 =
4. However, using 𝑚 = 3 the resulting squeezing will be 9.8dB. 

For the hexagonal GKP state, with 𝜃 = 𝜋/6, 𝑔Q = √𝜋/√3, we find the squeezing parameter 

in the main axes of the hexagonal grid. Taking 𝑔𝑄 → 𝑔𝑄𝑒
𝑖𝑡1 and 𝜃 → 𝜃 + 𝑡1, we can rotate the 

GKP state by an angle 𝑡1. Then we use Eqs. (54, 55) to calculate the squeezing parameters in other 

axes as well. For example, choosing 𝑡1 = −𝜋/6, the squeezing parameters will represent the 

projections on the 
𝜋

6
,
2𝜋

3
 axes. To get 10dB, we calculated the squeezing parameters in all the 

following axes: 0,
𝜋

2
,
𝜋

6
,
2𝜋

3
,
𝜋

3
,
5𝜋

6
. Simulating these states, one can notice that as 𝑟 increases, 𝑚 

decreases, and the probability increases.  We chose the squeezing parameter such that the 

squeezing in all X, Y, and Z directions (the directions of the Pauli operators of the hexagonal GKP) 

will be larger than 10dB. Four electrons are necessary for preparing 10dB squeezed GKP state. 

The squeezing parameter for the initial squeezed vacuum state is 𝑟 = 1.64. This scheme has a 

success probability of 27.3%.  

 

RM 4 Probability of success for preparing the grids of coherent states 
In this section, we calculate the probability to get the final photonic state according to the 

protocols suggested in the main text (Table 1) and described in RM 3.3 and RM 3.4. 

RM 4.1 The probability of post-selecting a specific grid of coherent states 
Here, we calculate the probability of post-selecting the photonic state |𝜓f⟩ph from Eq. (28), 

starting from the state |𝜓i⟩ph, inducing 𝑛 +𝑚 interactions with even comb electrons and post-

selectin 𝑚 even and 𝑛 odd energies. 

For the 1D grid, we take an initial state of an even comb electron and a general photonic state: 

|Ψinitial⟩ = |combeven⟩e⊗ |𝜓i⟩ph. (56) 
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We define operators of even and odd energy post-selection: 𝐸 = (𝐷𝑔Q + 𝐷−𝑔Q)/2, 

𝑂 = (𝐷𝑔Q − 𝐷−𝑔Q)/2.  After one interaction with an even comb electron, the final joint state is: 

𝐸|combeven⟩e⊗ |𝜓i⟩ph + 𝑂|combodd⟩e⊗ |𝜓i⟩ph. (57) 

According to Eq. (57), we write the final photonic state after 𝑛 +𝑚 − 1 interactions is (where 

𝑚 − 1 and n represent post-selected electrons with even/odd energies respectively):|𝜓𝑚−1,𝑛⟩ph =

𝑂𝑛𝐸𝑚−1|𝜓i⟩ph

‖𝑂𝑛𝐸𝑚−1|𝜓i⟩ph‖
.  

The final state after another interaction with an even comb electron is: 

1

‖𝑂𝑛𝐸𝑚−1|𝜓i⟩ph‖
(𝑂𝑛𝐸𝑚|combeven⟩e|𝜓i⟩ph + 𝑂

𝑛+1𝐸𝑚−1|combodd⟩e|𝜓i⟩ph). (58) 

 

The photonic state after post-selecting even energy is: |𝜓𝑚,𝑛⟩ph =
𝑂𝑛𝐸𝑚|𝜓i⟩ph

‖𝑂𝑛𝐸𝑚|𝜓i⟩ph‖
. The probability 

of post-selecting this energy is: 𝑃(even|even = 𝑚 − 1, odd = 𝑛) = ‖
𝑂𝑛𝐸𝑚|𝜓i⟩ph

𝑂𝑛𝐸𝑚−1|𝜓i⟩ph
‖
2

. Moreover, 

we need to sum over all the options (the different order of E and O post-selections) to post-select 

|𝜓𝑚,𝑛⟩ph. All these options contain 𝑚 even post-selected energies and 𝑛 odd post-selected energies 

and prepare the same photonic state (due to the commutation relations [𝐸, 𝑂] = 0). There are 

(
𝑚 + 𝑛
𝑚

) options to choose 𝑚 even energies out of 𝑚 + 𝑛 interactions. The probabilities for all 

the different routes are the same and can be calculated using a telescopic product as follows: 

𝑃(even|even = 𝑚, odd = 𝑛) ⋅ 𝑃(even|even = 𝑚 − 1, odd = 𝑛) ⋅⋅⋅ 𝑃(odd|even = 0, odd = 0)  

= ‖
𝑂𝑛𝐸𝑚|𝜓i⟩ph

𝑂𝑛𝐸𝑚−1|𝜓i⟩ph
‖

2

‖
𝑂𝑛𝐸𝑚−1|𝜓i⟩ph

𝑂𝑛𝐸𝑚−2|𝜓i⟩ph
‖

2

⋅⋅⋅ ‖𝑂|𝜓i⟩ph‖
2
= ‖𝑂𝑛𝐸𝑚|𝜓i⟩ph‖

2
. (59) 

Therefore, after substituting 𝑂 and 𝐸 operators, the final probability to have 𝑚 even and 𝑛 odd 

post-selected energies is: 

 𝑃(|𝜓f⟩ph) = (
𝑛 +𝑚
𝑚

)
‖(𝐷𝑔Q − 𝐷−𝑔Q)

𝑛

(𝐷𝑔Q + 𝐷−𝑔Q)
𝑚
|𝜓i⟩ph‖

2

4𝑛+𝑚
.  (60)

 

The coupling constant 𝑔Q in this formula is a general complex number.  

Using the binomial theorem, we get: 

𝑃(|𝜓f⟩ph) = (
𝑛 + 𝑚

𝑚
)
(−1)𝑛

4𝑛+𝑚
∑∑(

2𝑚
𝑖
) (
2𝑛
𝑗
) (−1)𝑗 ⟨𝜓i|𝐷𝑔Q(2𝑚+2𝑛−2𝑖−2𝑗)|𝜓i⟩

ph

2𝑚

𝑖=0

2𝑛

𝑗=0

.  (61) 

(This equation satisfies that the sum over all probabilities of all possible states is 1.) The binomial 

element outside the sum counts the number of options to get the same state after post-selecting 𝑚 

times even energies due to the commutative property of the process. 

For the 2D grid, the probability of preparing the photonic state |𝜓f⟩ph in Eq. (30) is:    
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 𝑃 = (
𝑘 + 𝑙
𝑘
) (
𝑚 + 𝑛
𝑚

)
‖(𝐷|𝑔Q2| − 𝐷−|𝑔Q2|)

𝑛

(𝐷|𝑔Q2| + 𝐷−|𝑔Q2|)
𝑚

(𝐷𝑖|𝑔Q1| − 𝐷−𝑖|𝑔Q1|)
𝑙

(𝐷𝑖|𝑔Q1| + 𝐷−𝑖|𝑔Q1|)
𝑘
|𝜓i⟩ph‖

2

4𝑚+𝑛+𝑘+𝑙
, (62)

 

where all the other parameters 𝑛,𝑚, 𝑘, 𝑙 are presented as in Eq. (30). This equation is a 

generalization of Eq. (60) which refers to a 1D grid. Thus, the 2D grid creation probability is 

obtained by multiplying the probabilities of two 1D grids. For example, we interact with the 

imaginary coupling constant 𝑖|𝑔Q1| and obtain the probability of the photonic state. Afterward, we 

continue with the resulting 1D grid state and interact with a different real constant |𝑔Q2|, 

orthogonal to the 1D grid state. 

For the rectangular grid of coherent states, presented in Eq. (30), the probability of success to 

post-select only even energies is: 

 𝑃 =
1

4𝑚+𝑘
‖(𝐷|𝑔Q2| + 𝐷−|𝑔Q2|)

𝑚

(𝐷𝑖|𝑔Q1| + 𝐷−𝑖|𝑔Q1|)
𝑘
|𝜓i⟩ph‖

2

=

1

4𝑚+𝑘
⟨𝜓i|ph (𝐷𝑖|𝑔Q1| + 𝐷−𝑖|𝑔Q1|)

𝑘

(𝐷|𝑔Q2| + 𝐷−|𝑔Q2|)
2𝑚

(𝐷𝑖|𝑔Q1| + 𝐷−𝑖|𝑔Q1|)
𝑘
|𝜓i⟩ph. (63)

 

For the case of creating a 2D grid state by |comb4
0⟩eelectrons, the probability of success to 

post-select the state |comb4
0⟩e 𝑚 times can be calculated in the same way: 

𝑃(|𝜓f⟩ph) = ‖𝐸4
𝑚|𝜓i⟩ph‖

2
=
‖(𝐷𝑔Q + 𝐷−𝑔Q +𝐷𝑖𝑔Q + 𝐷−𝑖𝑔Q)

𝑚
|𝜓i⟩ph‖

2

16𝑚
= 

=
1

16𝑚
∑∑ ∑ (

2𝑚
𝛼
)(
𝛼
𝛽) (

2𝑚 − 𝛼
𝛾

)

2𝑚−𝛼

𝛾=0

𝛼

𝛽=0

𝑒−𝑖𝑔Q
2 (2𝛽−𝛼)(2𝛾+𝛼−2𝑚)⟨𝜓i|ph𝐷𝑔Q(2𝛽−𝛼)+𝑖𝑔Q(2𝛾+𝛼−2𝑚)|𝜓i⟩ph

2𝑚

𝛼=0

. (64) 

 

 
 

RM 4.2 Expanding the 1D probability formula for an initial vacuum state 
The probability of post-selecting 𝑚 even energies and 𝑛 odd energies after 𝑛 +𝑚 is described 

by Eqs. (60, 61). Let us simplify Eq. (61) for the case of an initial vacuum state, i.e., |𝜓i⟩ph =

|0⟩ph. Recalling the identity: 

⟨𝛽|𝛼⟩ = 𝑒−
1
2
(|𝛽|2+|𝛼|2−2𝛽∗𝛼). (65) 

Using it, one can derive: 

𝑃(|𝜓f⟩ph) = (
𝑛 + 𝑚

𝑚
)
(−1)𝑛

4𝑛+𝑚
∑∑(

2𝑚
𝑖
) (
2𝑛
𝑗
) (−1)𝑗𝑒−2|𝑔Q|

2
|𝑚+𝑛−𝑖−𝑗|2

2𝑚

𝑖=0

2𝑛

𝑗=0

.  (66) 

Since we are interested in GKP states, we will look at the special case, where only even comb 

electrons are post-selected (𝑛 = 0): 
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𝑃(|𝜓f⟩ph) =
1

4𝑚
∑(

2𝑚
𝑖
) 𝑒−2|𝑔Q|

2
|𝑚−𝑖|2

2𝑚

𝑖=0

. (67) 

To evaluate how fast the probability decays, we take the leading term in the sum for large 𝑚 and 

use the Stirling approximation (
2𝑚
𝑚
)~

22𝑚

√𝑚𝜋
. Therefore, we get: 

𝑃(|𝜓f⟩ph) ≈
1

4𝑚
∑

22𝑚

√𝑚𝜋
𝑒−2|𝑔Q|

2
|𝑚−𝑖|2

2𝑚

𝑖=0

≈
1

√𝑚𝜋
∑ 𝑒−2|𝑔Q|

2
𝑖2

+∞

𝑖=−∞

. (68) 

Finally, we get the following expression: 

𝑃(|𝜓f⟩ph) ≈
1

√𝑚𝜋
𝜃3 (0, 𝑒

−2|𝑔𝑄|
2

) , (69) 

where 𝜃3 is the Elliptic Theta function, which decreases for a larger 𝑔Q and goes to 1 for 𝑔Q ≫ 1. 

As 𝑚 increases, the probability decays to zero like 1/√𝑚𝜋, and not exponentially as might seem 

at first glance from the description of the protocol (given that the first interaction is post-selected 

with a probability close to half). This result can be explained by the destructive interference of the 

wavefunction. Once the quantum light state approaches a GKP state, the operation of the O 

operator (defined above Eq. (57)) results in probability of odd post-selection that approaches 0.  

The probability of success to post-select the state |comb4
0⟩e 𝑚 times, to create a GKP magic 

state, can be calculated in the same way: 

𝑃(|𝜓f⟩ph) =
1

16𝑚
∑∑ ∑ (

2𝑚
𝛼
)(
𝛼
𝛽) (

2𝑚 − 𝛼
𝛾

)

2𝑚−𝛼

𝛾=0

𝛼

𝛽=0

𝑒−𝑖𝑔Q
2 (2𝛽−𝛼)(2𝛾+𝛼−2𝑚)𝑒−

1
2
𝑔Q
2 ((2𝛽−𝛼)2+(2𝛾+𝛼−2𝑚)2)

2𝑚

𝛼=0

 (70) 

The probability of success to measure the state |comb4
0⟩e 𝑚 times can be similarly calculated, just 

multiplying each element in the sum by (−1)2𝑚−𝛼. 

 

 

RM 4.3 The probability of post-selecting a GKP state 
The probability of post-selecting the photonic state |𝜓f⟩ph for a 2D rectangular grid is 

described in Eq. (62).   For the case of square GKP described in Eq. (41), we have: 

𝑃(GKP′) =
1

45𝑚
∑(

2𝑚
𝑖
) 𝑒−𝜋|𝑚−𝑖|

2
∑(

8𝑚
𝑖
) 𝑒−

𝜋
4
|4𝑚−𝑗|2

8𝑚

𝑗=0

2𝑚

𝑖=0

. (71) 

Thus, according to Eq. (68), we can use the following approximation: 

𝑃(GKP′) ≈
1

√𝑚𝜋
𝜃3(0, 𝑒

−𝜋)
1

√4𝑚𝜋
𝜃3 (0, 𝑒

−
𝜋
4) ≈

1

𝑚𝜋
. (72) 
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RM 4.4 Expanding the 1D probability formula for an initial squeezed vacuum state 
In this section, we calculate the probability described by Eq. (62) for photonic mode in a 

squeezed vacuum = state: |𝜓i⟩ph = 𝑆(𝜉)|0⟩ph. 𝑆(𝜉) is the squeezing operator 𝑒
1

2
(𝜉∗𝑎̂2−𝜉𝑎†

2
)
, where 

𝜉 = 𝑟𝑒𝑖𝜃 is the squeezing parameter [5, 15]. We use the following property of the squeezing 

operator: 

𝐷𝛼𝑆(𝜉) = 𝑆(𝜉)𝐷𝛾, 𝛾 = 𝛼 cosh 𝑟 + 𝛼∗𝑒𝑖𝜃 sinh 𝑟 , (73) 
Thus, we get: 

⟨𝜓i|ph𝐷𝑔Q(2𝑚+2𝑛−2𝑖−2𝑗)|𝜓i⟩ph = ⟨0|ph𝑆
†(𝜉)𝐷𝑔Q(2𝑚+2𝑛−2𝑖−2𝑗)𝑆(𝜉)|0⟩ph = ⟨0|ph𝐷𝛾|0⟩ph.  (74) 

For a real coupling constant:   𝛾 = 𝑔Q (cosh 𝑟 + 𝑒
𝑖𝜃 sinh 𝑟) and for an imaginary coupling 

constant: 𝛾 = 𝑖𝑔Q(cosh 𝑟 − 𝑒
𝑖𝜃 sinh 𝑟). Assuming 𝑔Q is real, one can write: 

𝑃(|𝜓f⟩ph) = (
𝑛 +𝑚
𝑚

)
(−1)𝑛

4𝑛+𝑚
∑∑(

2𝑚
𝑖
) (
2𝑛
𝑗
) (−1)𝑗𝑒−2(

|𝑔Q|
2
|(𝑚+𝑛−𝑖−𝑗)|2|cosh𝑟+𝑒𝑖𝜃 sinh𝑟|

2
)

2𝑚

𝑖=0

.

2𝑛

𝑗=0

 (75) 

Examining this equation, we notice that the relative phase between the squeezing and the coupling 

constant alters the probability. For the GKP case where all post-selections are even, we can further 

simplify and write: 

𝑃(|𝜓f⟩ph) =
1

4𝑚
∑(

2𝑚
𝑖
) 𝑒−2|𝑔Q|

2
|(𝑚−𝑖)|2|cosh𝑟+𝑒𝑖𝜃 sinh𝑟|

2
2𝑚

𝑖=0

 (76) 

 For the square GKP state (𝑔Q = √𝜋/2 , 𝜃 = 0), following Eq. (69) we derive.: 

𝑃(|𝜓f⟩ph) ≈
1

√𝑚𝜋
𝜃3(0, 𝑒

−𝜋|cosh𝑟+sinh𝑟|2) ≈
1

√𝑚𝜋
. (77) 

 

RM 5 The fidelity of the photonic state after interacting with finite 

electron combs 
The scheme presented in our work relies on the ability to generate high-quality free-electron 

combs. This section analyses the effect of non-perfect combs on the resulting photonic state; it is 

organized in the following order: In RM 5.1, we calculate the fidelity for displacing a coherent 

state by a Gaussian electron comb. In RM 5.2, we calculate the fidelity for a cat state after 

interaction with a Gaussian electron comb. In RM 5.3, we provide a calculation for the fidelity of 

a 1D grid state created with 𝑚 consequent Gaussian electron combs, and we use that to estimate 

the GKP fidelity after multiple interactions. In RM 5.4, we show the dependence of the fidelity of 

displacing a cat on the phase of the interaction. In RM 5.5 we provide a calculation for the cat 

fidelity as a result of fluctuations in the coupling constant 𝑔Q from the ideal values needed to 

generate the GKP state. Finally, in section RM 5.6, we consider the effect of free-space propagation 

and how it affects the electron comb fidelity with a perfect Gaussian electron comb.  
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RM 5.1 Fidelity of the displaced coherent state generated from the interaction of a 

finite comb electron with a coherent state 
Here we show how to calculate the fidelity of the photonic state after interacting with a finite 

comb electron. We assume that the initial photonic state is a coherent state, and the electron state 

is a finite comb with intervals ℏ𝜔 between the peaks (imperfect |comb1
0⟩e): 

|Ψi⟩ = 𝐷𝛼|𝜓⟩e⊗ |0⟩ph, (78) 

where |𝜓⟩e is the finite comb-electron. The scattering matrix of the electron-photon interaction 

can be written in the terms of the displacement operator 𝑆 = 𝐷𝑔𝑄𝑏 . Then the final state of the 

electron-photon system is: 

|Ψf⟩ = 𝐷𝑔Q𝑏𝐷𝛼|𝜓⟩e⊗ |0⟩ph. (79) 

For an ideal comb-electron, the resulting light state is: 

|𝜓⟩ph = 𝐷𝑔Q𝐷𝛼|0⟩ph = 𝑒
𝑔𝑄𝛼

∗−𝑔𝑄
∗ 𝛼

2 𝐷𝑔Q+𝛼|0⟩ph. (80) 

Then the expectation value for the fidelity between an imperfect comb and an ideal comb equals 

to: 

𝐹 = Tre (⟨𝜓|ph|Ψf⟩⟨Ψf|𝜓⟩ph
) . (81) 

Eq. (81) is used in the following sections, where the specific post-selection changes the joint 

state |Ψf⟩. Eq. (81) gives the fidelity averaged over all the different options for the |Ψf⟩. 
Substituting Eqs. (79,80) into Eq. (81), we get: 

𝐹 = ⟨𝜓|e⟨0|ph𝐷−𝛼𝐷−𝑔Q𝑏𝑒
𝑔Q𝛼

∗−𝑔Q
∗ 𝛼

2 𝐷𝑔Q+𝛼|0⟩ph⟨0|ph𝑒
−
𝑔Q𝛼

∗−𝑔Q
∗ 𝛼

2 𝐷−𝑔Q−𝛼𝐷𝑔Q𝑏𝐷𝛼|0⟩ph|𝜓⟩e. = 

= ⟨𝜓|e⟨0|ph𝐷−𝛼𝐷−𝑔Q𝑏𝐷𝑔Q+𝛼|0⟩ph⟨0|ph𝐷−𝑔Q−𝛼𝐷𝑔Q𝑏𝐷𝛼|0⟩ph|𝜓⟩e = 

= ⟨𝜓|e⟨0|ph𝐷𝑔Q(1−𝑏)|0⟩ph⟨0|ph𝐷𝑔Q(𝑏−1)|0⟩ph|𝜓⟩e = 

= ⟨𝜓|e𝑒
−|𝑔Q|

2
(2−𝑏−𝑏†)|𝜓⟩e = 𝑒−2|𝑔Q|

2

∑
|𝑔Q|

2𝑚
|𝑔Q|

2𝑛

𝑚!𝑛!
〈𝑏𝑚−𝑛⟩e

𝑚,𝑛

. (82) 

From this equation, we see that for the special case of coherent states, the fidelity does not depend 

on the coherent state amplitude 𝛼, but only on the size of the comb and the coupling constant 𝑔𝑄.  

RM 5.2 Fidelity of cat states following the interaction of an even finite electron comb 

with the vacuum 
Here we show how to calculate the fidelity of a cat state after the interaction of a vacuum state 

with a finite even comb electron. We assume that the initial photonic mode is in a vacuum state 

and the electron state is a finite even comb with intervals 2ℏ𝜔 (imperfect |comb2
0⟩e) between the 

peaks: 

|Ψi⟩ = |𝜓⟩e⊗ |0⟩ph, (83) 
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If we post-select even energies after the interaction, we can write the final state as:  

|Ψf⟩ ∝ (𝐷𝑔Q𝑏 + 𝐷−𝑔Q𝑏)|𝜓⟩e⊗ |0⟩ph = 𝑒−
|𝑔Q|

2

2 ∑
𝑔Q
2𝑚

√(2𝑚)!
𝑚

𝑏2𝑚|𝜓⟩e|2𝑚⟩ph
Fock. (84) 

For an even ideal infinite comb electron, the resulting photonic state is a cat state: 

|cat⟩ph ∝ |𝑔Q⟩ph + |−𝑔Q⟩ph.
(85) 

Then the fidelity between the approximated cat state and an ideal cat state equals: 

𝐹 = Tre (⟨cat|phΨf⟩⟨Ψf|cat⟩ph
) . (86) 

Substituting Eqs. (82,85) into Eq. (86), we get: 

𝐹 ∝ 𝑒−|𝑔Q|
2

∑
𝑔Q
2𝑚𝑔∗Q

2𝑛

√(2𝑚)! (2𝑛)!𝑚,𝑛

⟨𝑏2𝑚−2𝑛⟩
e
(⟨𝑔Q|

ph
+ ⟨−𝑔Q|

ph
) |2𝑚⟩ph

Fock⟨2𝑛|ph
Fock (|𝑔Q⟩

ph
+ |−𝑔Q⟩

ph
) (87) 

One can further simplify this equation by using ⟨2𝑛|ph
Fock(|𝑔Q⟩ + |−𝑔𝑄⟩) = 𝑒−

|𝑔𝑄|
2

2
2𝑔𝑄

2𝑛

√2𝑛!
 and get: 

𝐹 ∝∑
|𝑔Q|

4𝑚
|𝑔Q|

4𝑛

(2𝑚)! (2𝑛)!
𝑚,𝑛

〈𝑏2(𝑚−𝑛)⟩
e
. (88) 

To normalize the fidelity, we notice that 𝐹 = 1 for an ideal comb, when ⟨𝑏⟩e = 1. Thus, finally, 

we get: 

𝐹 =
1

cosh2|𝑔𝑄|
2∑

|𝑔Q|
4𝑚
|𝑔Q|

4𝑛

(2𝑚)! (2𝑛)!
〈𝑏2𝑚−2𝑛⟩e

𝑚,𝑛

. (89) 

We found the average fidelity of the cat state. However, in this section, we also calculate the 

fidelity 𝐹𝑘 after post-selecting specific electron energy 𝑘 ⋅ 2ℏ𝜔, to show how the fidelity changes 

with the post-selected energy  (Fig. 2h in the main text). For this purpose, we write the electron 

wavefunction on the energy basis: 

|𝜓⟩e =∑𝑐𝑘|2𝑘⟩e
𝑘

, (90) 

where |𝜓⟩e is the approximated electron comb with an energy difference 2ℏ𝜔, and |2𝑘⟩e is the 

state of the electron with energy 𝐸0 + 𝑘 ⋅ 2ℏ𝜔. In this case, Eq. (84) can be simplified: 

|Ψf⟩ ∝∑𝑐𝑘+𝑚
𝑔𝑄
2𝑚

√(2𝑚)!
𝑚,𝑘

|2𝑚⟩ph|2𝑘⟩e. (91) 

If we post-select energy 𝐸0 + 𝑘 ⋅ 2ℏ𝜔, we get the following photonic state: 

|ψf⟩ph =
1

√𝑃(𝑘)
∑𝑐𝑘+𝑚

𝑔𝑄
2𝑚

√(2𝑚)!
𝑚

|2𝑚⟩ph
Fock, (92) 
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where 𝑃(𝑘) = |∑ 𝑐𝑘+𝑚
𝑔𝑄
2𝑚

√(2𝑚)!𝑚 |
2

. In the ideal case according to Eq. (85) we have the cat state: 

|cat⟩ph =
|𝑔𝑄⟩ + |−𝑔𝑄⟩

√2 (1 + 𝑒−2|𝑔𝑄|
2

)

=
1

√cosh|𝑔Q|
2
∑

𝑔𝑄
2𝑛

√(2𝑛)!
|2𝑚⟩ph

Fock

𝑛

. (93)
 

Thus, the fidelity compared with the ideal cat state equals: 

𝐹(𝑘) = |⟨cat|𝜓f⟩ph|
2
=

1

cosh|𝑔Q|
2
⋅ 𝑃(𝑘)

|∑𝑐𝑘+𝑚
|𝑔𝑄|

4𝑚

(2𝑚)!
𝑚

|

2

. (94) 

The fidelity 𝐹(𝑘) for cat state is displayed in Fig. 2h in the main text. Furthermore, Eq. (94) is in 

full agreement with the average fidelity calculated in Eq. (89): 

𝐹 =
∑ 𝐹(𝑘) ⋅ 𝑃(𝑘)𝑘

∑ 𝑃(𝑘)𝑘
, (95) 

where 𝐹 is the fidelity calculated according to Eq. (89) and 𝐹(𝑘) is the fidelity calculated according 

to Eq. (94). In all next sections, we will calculate the average fidelity only. 

For calculating the fidelity we further define a Gaussian electron comb |𝜓⟩e =
1

√𝜃3(0,exp(−1/2𝜎e
2))

∑ 𝑒−𝑘
2/4𝜎e

2
|2𝑘⟩e

∞
𝑘=−∞ , such that the probability to post-select an even peak will 

follow the discrete Gaussian distribution 
1

𝜃3(0,exp(−1/2𝜎e
2))
𝑒−𝑘

2/2𝜎e
2
, which is normalized by the 

Elliptic Theta function  𝜃3. 

 

RM 5.3 Fidelity estimation for GKP state prepared by a finite comb electron  
The GKP state protocols require post-selection over the electron energy, each post-selected 

energy results in a different photonic state depending on the approximated state for an ideal comb. 

The probability of post-selecting different even energies for an approximated comb depends on 

the specific deviation from a perfect comb. First, we consider an approximated comb-electron 

interacting with an ideal 1D photonic grid state. If we post-select even energies after the 

interaction, we can write the final state as: 

|Ψf⟩ ∝ (𝐷𝑔Q𝑏 + 𝐷−𝑔Q𝑏)(𝐷𝑔Q + 𝐷−𝑔Q)
𝑚
|0⟩ph|𝜓⟩e, (96) 

where (𝐷𝑔Q + 𝐷−𝑔Q)
𝑚
|0⟩ph is an initial 1D grid state. For an ideal electron comb, the photonic 

state after the post-selection of even energies is: 

|𝜓⟩ph ∝ (𝐷𝑔Q + 𝐷−𝑔Q)
𝑚+1

|0⟩ph. (97) 

According to Eqs. (86, 96), the fidelity equals: 

𝐹 ∝ ⟨𝑓(𝑏)𝑓†(𝑏)⟩
e
, (98) 

while 𝑓(𝑏) is defined as: 
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𝑓(𝑏) = ⟨0|ph(𝐷𝑔Q + 𝐷−𝑔Q)
𝑚

(𝐷𝑔Q𝑏 + 𝐷−𝑔Q𝑏)(𝐷𝑔Q + 𝐷−𝑔Q)
𝑚+1

|0⟩ph, (99) 

where 〈… ⟩e = ⟨𝜓|… |𝜓⟩e means the average over the finite electron comb. We can further 

simplify Eq. (99) using the binomial theorem: 

𝑓(𝑏) = ⟨0|ph∑(
𝑚
𝑛
)(𝑒

|𝑔Q|
2

2
(2𝑛−𝑚)(𝑏†−𝑏)𝐷(2𝑛−𝑚+𝑏)𝑔Q + 𝑒

−
|𝑔Q|

2

2
(2𝑛−𝑚)(𝑏†−𝑏)𝐷(2𝑛−𝑚−𝑏)𝑔Q)

𝑚

𝑛=0

(𝐷𝑔Q + 𝐷−𝑔Q)
𝑚+1

|0⟩ph =

= ⟨0|ph∑(
𝑚 + 1
𝑘

) (
𝑚
𝑛
)(𝑒

|𝑔Q|
2

2
(2𝑛−2𝑘+1)(𝑏†−𝑏)𝐷(2𝑛+2𝑘−2𝑚−1+𝑏)𝑔Q + 𝑒

−
|𝑔Q|

2

2
(2𝑛−2𝑘+1)(𝑏†−𝑏) 𝐷(2𝑛+2𝑘−2𝑚−1−𝑏)𝑔Q) |0⟩ph

𝑘,𝑛

. (100)

 

We can use the formula ⟨0|𝐷𝛼|0⟩ph = 𝑒
−
|𝛼|2

2 , and finally, get: 

{
 
 
 

 
 
 𝐹𝑚 =

1

norm
〈𝑓(𝑏)𝑓†(𝑏)⟩

e
,

𝑓(𝑏) =∑(
𝑚 + 1
𝑘

) (
𝑚
𝑛
) 𝑒−

|𝑔Q|
2
(2𝑛+2𝑘−2𝑚−1)2

2 cosh [|𝑔Q|
2
(𝑏†(2𝑛 − 𝑚) + 𝑏(2𝑘 − 𝑚 − 1))]

𝑘,𝑛

,

norm = |∑(
𝑚 + 1
𝑘

) (
𝑚
𝑛
) 𝑒−

|𝑔Q|
2
(2𝑛+2𝑘−2𝑚−1)2

2 cosh [|𝑔Q|
2
((2𝑛 − 𝑚) + (2𝑘 − 𝑚 − 1))]

𝑘,𝑛

|

2

.

(101) 

 In the case of the creation of a cat state from a vacuum state (𝑚 = 0), Eq. (101) can be simplified: 

𝐹0 =

〈cosh (|𝑔Q|
2
𝑏) cosh (|𝑔Q|

2
𝑏†)⟩

e

cosh2|𝑔Q|
2 . (102) 

One can notice that this is the same result as in Eq. (89). 

Now we can estimate the fidelity for GKP states after 𝑚 interactions with real 𝑔Q1 and 𝑛 

interactions with imaginary 𝑔Q2.  We assume that we can multiply the fidelity of each 𝑚th step and 

calculate the total fidelity in both directions by multiplying the fidelities in each direction since 

the interactions are orthogonal. To justify this assumption, we further discuss the fidelity of 

displacements in orthogonal directions in section RM 5.4 and Fig. RM 1d. Under these 

assumptions the fidelity for a square GKP is: 

𝐹 =∏ 𝐹
𝑖

𝑔Q1
𝑚

𝑖=0
∏ 𝐹

𝑗

𝑔Q2
𝑛

𝑗=0
, (103) 

where 𝐹
𝑖

𝑔𝑄1
 is calculated according to Eq. (101). We calculate the fidelity for a Gaussian electron 

comb with intervals 2ℏ𝜔 and a standard deviation of 30 peaks 𝜎𝑒, for rows 2 and 3 in Table 1 of 

the main text (Fig RM 1a). We can see that for the required squeezing level of 10dB (𝑚 = 3) the 

fidelity is above 98%. The 3rd row of the table has a better fidelity since the number of electrons 

is much smaller (6 electrons for the 3rd row, compared to 15 electrons for the 2nd row). 
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RM 5.4 Fidelity of a displaced cat state after the interaction with a finite comb electron 
In the previous sections, we assumed that the phase of the initial state is equal to the phase of 

the coupling 𝑔Q. However, generally, it is not the case. Here we investigate how the fidelity 

depends on the phase between the initial cat state |𝛼⟩ph + |−𝛼⟩ph and the coupling 𝑔𝑄. For 

simplicity, we consider a finite comb with intervals ℏ𝜔 (imperfect |comb1
0⟩e) between the peaks 

and trace out over the electron (for an ideal comb, the electron does not entangle to the photonic 

state). The final state of the electron-photon system is: 

|Ψf⟩ ∝ 𝐷𝑔Q𝑏(𝐷𝛼 + 𝐷−𝛼)|𝜓⟩e|0⟩ph. (104) 

In the case of the ideal comb, the light state is: 

|𝜓⟩ph ∝ 𝐷𝑔Q(𝐷𝛼 + 𝐷−𝛼)|0⟩ph. (105) 

The fidelity is calculated according to Eq. (86). Similarly to previous sections, we can simplify the 

fidelity to get: 

𝐹 =
1

(𝑒−2|𝛼|2+1)
2
⟨𝜓
|

|
𝑒|𝑔Q|

2
(𝑏
†
+𝑏−2)

(

 
 
𝑒−2|𝛼|

2
cosh(𝛼∗𝑔Q(𝑏−1)+𝛼𝑔Q

∗ (𝑏
†
−1))

+cosh(𝛼∗𝑔Q(𝑏−1)−𝛼𝑔Q
∗ (𝑏

†
−1))

)

 
 

2

|

|
𝜓⟩

𝑒

. (106) 

This equation allows us to calculate the fidelity for an arbitrary 𝛼 and an arbitrary phase 

between 𝑔𝑄 and 𝛼. The dependence of the fidelity as a function of the phase for different Gaussian 

electron combs is depicted in Fig. RM 1d. From Fig. RM 1d we learn that when the displacement 

of the electron is orthogonal to the cat state, the effect of the cat amplitude on the fidelity is minimal 

and a slightly higher than the fidelity of a displaced vacuum state (see section RM 5.1) This fact 

follows the physical intuition that the difference between parallel or orthogonal 𝑔Q and 𝛼, is that 

electron bunched in the time domain is in phase with the peaks of the oscillating electric field 

(when 𝑔Q and 𝛼 are real) or when the electric field exactly crosses zero (when 𝑔Q is imaginary and 

𝛼 is real). We expect the field amplitude 𝛼 will affect when it has the same phase as the electron 

comb. Furthermore, the higher relative fidelity for the cat state (when 𝑔Q is imaginary and 𝛼 is 

real) compared to the displaced coherent state resulting from the fact that the cat state is squeezed 

relative to the vacuum state. 

 

RM 5.5 Fidelity for creation of a cat state taking into account fluctuation in the coupling 

𝑔𝑄 
Let us consider the case when we have small fluctuations in the coupling constant with a 

deviation 𝜖. According to Eq. (78) the final state after one interaction takes the following form: 

|Ψf⟩ ∝ 𝐷(𝑔Q+𝜖)𝑏|𝜓⟩e|0⟩ph ∝∑
(𝑔Q + 𝜖)

2𝑚

√(2𝑚)!
𝑚

𝑏2𝑚|𝜓⟩e|2𝑚⟩ph
Fock. (107) 

For an ideal comb electron, after post-selection a cat state is generated, presented in Eq. (85). After 

calculating the fidelity according to Eq. (86) and repeating the same mathematical steps as in RM 

5.2, we get: 
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𝐹(𝜖) =
1

cosh (|𝑔Q|
2
) cosh (|𝑔Q + 𝜖|

2
)
∑

|𝑔Q|
2𝑚+2𝑛

|𝑔Q + 𝜖|
2𝑚+2𝑛

(2𝑚)! (2𝑛)!
𝑚,𝑛

〈𝑏2(𝑚−𝑛)⟩
e
. (108) 

Now let us consider the fidelity for the case where 𝜖 is a Gaussian random variable with a 

standard deviation Δ𝑔Q and average 0. The probability density function is: 

𝑃 (𝜖, Δ𝑔
Q
 ) =

1

Δ𝑔
Q√2𝜋

𝑒
−

1

2Δ𝑔Q
2𝜖
2 

. (109) 

We can calculate the fidelity as a function of Δ𝑔Q by: 

𝐹 (Δ𝑔
Q
) = ∫ 𝐹(𝜖)𝑃 (𝜖, Δ𝑔

Q
)𝑑𝜖

∞

−∞

. (110) 

We plot the fidelity as a function of Δ𝑔Q for a Gaussian comb of 𝜎e = 30 and 𝑔Q = √𝜋/2  in 

Fig RM 1b. We can see that the fidelity goes like ∝ 1 − Δ𝑔
Q
2 , suggesting rather small changes for 

the cat fidelity with Δ𝑔Q. Such variations usually appear in grazing angle interactions since the 

electron beam interacts with evanescent fields that decay exponentially. In other words, the electric 

field 𝐸𝑧(𝑟⊥, 𝑧 − 𝑡) is not uniform along 𝑟⊥ and t. 

RM 5.6 Free-space propagation effect on the fidelity of a Gaussian comb electron 
Now, we consider the distance at which a Gaussian comb electron with 𝜎 = 30 peaks can 

propagate while maintaining high fidelity with itself. In order to estimate the distance, we describe 

the electron by the unitary evolution 𝑈𝜑 for free space propagation [2]. 𝑈𝜑 alters the electron state 

in the manner of 𝑈𝜑|𝐸𝑘⟩e = 𝑒
−𝑖𝜑𝑘2|𝐸𝑘⟩e. 𝜑 is defined by 𝜑 = 2𝜋

𝑧

𝑧𝐷
,  with 𝑧 being the propagation 

distance and 𝑧𝐷 = 4𝜋𝛾3𝑚𝑒𝑣
3/ℏ𝜔2. 𝑚𝑒 is the electron mass, 𝑣 its velocity, and 𝛾 is the Lorentz 

factor. We plot the electron fidelity of Gaussian comb electrons as a function of distance, for 

different average electron energies and wavelengths (Fig RM 1c) 
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Figure RM 1. Fidelity of GKP and cat states generated from imperfect comb electrons. The 

calculations in all panels are for a Gaussian electron comb with an envelope standard deviation of 

σe = 30. (a) GKP fidelity as function number of steps 𝑚, for rows 2 (blue) and 3 (orange) in Table 

1, calculated according to Eq. (103). (b) Cat state fidelity generated by comb electron as a function 

of the standard deviation of 𝑔Q (Eq. (109, 110)) normalized by 𝑔Q. The coupling constant is 𝑔Q =

√𝜋/2 .  (c) Fidelity of the Gaussian electron with itself after dispersion induced by free-space 

propagation. Electron mean energy of E0 = 200 keV (black) has weaker dispersion and thus shows 

higher fidelity than E0 = 120 keV (red), both interacting with a light of wavelength 1550 nm. 

Shortening the wavelength to 800 nm (blue) decreases the fidelity due to stronger dispersion. (d) 

Fidelity of a displaced cat state of |√𝜋/2 ⟩ + | − √𝜋/2 ⟩ by 𝐷𝑒𝑖𝜙√𝜋/2 . The fidelity is plotted in a 

polar plot as a function of 𝜙, demonstrating that for orthogonal displacement and cat state phases, 

the fidelity is not affected much by the amplitude of the cat state. However, when they are parallel 

to each other, the fidelity is much lower. Here the displacement fidelities compare comb electrons 

of 𝜎e = 16, 30. 

RM 5.7 Measurement noise and emitted electrons uncertainty effects on the fidelity of the 

final GKP state 
In this section, we consider two additional error mechanisms in the creation process of the 

photonic state: electron detection error in the electron spectrometer and uncertainty in the number 

of emitted electrons, which in normal circumstances follows Poisson statistics.  

As the first example, we ignore the detection error and calculate the probability to create a 

GKP state from a squeezed vacuum state with an unknown number of electrons per pulse, 

following a Poissonian distribution with parameter 𝜆 [16, 17]:  

𝑃(GKP from SV) = ∑ 𝑃(GKP from SV|𝑚 electrons) ⋅ 𝑃(𝑚 electrons)

𝑚≥3

. (111) 
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𝑃(GKP from SV|𝑚 electrons) is given in Eq. (70) and 𝑃(𝑚 electrons) =
𝜆𝑚

𝑚!
𝑒−𝜆 follows the 

Poisson distribution with parameter 𝜆. The probability of GKP state creation depends on the value 

of the 𝜆 parameter, which we control through the intensity of the excitation laser. We find that 𝜆 =

5 optimizes the probability of GKP creation from a squeezed vacuum state, reaching 21.5%. 

Now, we consider the electron detection efficiency and calculate the probability for an error in 

the GKP process taking both uncertainties into consideration. The probability of no error in the 

process of creating a GKP state is: 

𝑃(no error) =∑𝑃(no error|𝑚 electrons) ⋅ 𝑃(𝑚 electrons)

𝑚

. (112) 

𝑃(no error|𝑚 electrons) = 𝜂𝑚 is the probability to measure all the 𝑚 electrons correctly, with 𝜂 

being the probability to correctly measure one electron. Therefore: 

𝑃(no error) =∑
(𝜂 ⋅ 𝜆)𝑚

𝑚!
𝑒−𝜆 = 𝑒𝜂𝜆𝑒−𝜆 = 𝑒𝜆(𝜂−1) ≈ 1 − 𝜆(1 − 𝜂)

𝑚

. (113) 

Choosing 𝜂 = 0.99 and 𝜆 = 5, we get 𝑃(no error) = 0.951. 

We next evaluate the photonic density matrix with this error. The density matrix of a perfect 

GKP state is 𝜌no error = |0⟩⟨0|ph
GKP. Error in the electron detection will cause an O operator to act 

on the photonic mode instead of an 𝐸 operator (defined in Eq. (58)). Thus, the density matrix of 

the state with the error is: 

𝜌error = 𝐸
𝑛|0⟩⟨0|ph𝐸

𝑛 + 𝑂𝐸𝑛−1|0⟩⟨0|ph𝐸
𝑛−1𝑂 (114) 

The total density matrix is: 

𝜌 = 𝑃(error)𝜌error + 𝑃(no error)𝜌no error ≅ 0.05 ⋅ 𝜌error + 0.95 ⋅ 𝜌no error (115) 

The fidelity of this state is 0.95 ⋅ 𝐹(𝜌no error) with 𝐹(𝜌no error) being the fidelity of the GKP state, 

which considers the imperfect electron wavefunction (Eq. (103)). Thus, we found a lower bound 

for the fidelity of the final GKP state, taking into consideration all the possible noise channels – 

uncertainty in the electron number, imperfect electron preparation, and electron detection errors. 

RM 6 Creating entangled GKP states and cat states 
RM 6.1 Creating entangled cat states 

As described in the main paper, we use the approach from ref. [18] to create a Bell state 

between two photonic modes. The initial state of the full system contains the even comb electron 

and two photonic modes in a vacuum state: 

|Ψi⟩ = |combeven⟩e|0⟩ph1|0⟩ph2. (116) 

After each interaction of the electron with the two photonic modes, the final state is evaluated 

using the scattering matrices (SM1): 

|Ψf⟩ = 𝑆2𝑆1|Ψi⟩. (117) 
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Using the formalism presented in Eq. (57), the state after the first interaction is: 

|Ψf⟩ = 𝑆2(𝐸1|combeven⟩e|0⟩ph1|0⟩ph2 + 𝑂1|combodd⟩e|0⟩ph1|0⟩ph2), (118) 

While 𝐸1, 𝑂1 act on the first state of light, creating even and odd cat states, respectively: 

𝐸|0⟩ph = |cateven⟩ph, 𝑂|0⟩ph = |catodd⟩ph. (119) 
Eq. (118) can be further developed, using the commutation relations [𝑆2, 𝐸1] = [𝑆2, 𝑂1] = 0 to 

write: 

|Ψf⟩ = (𝐸1𝑆2|combeven⟩e|0⟩ph1|0⟩ph2 + 𝑂1𝑆2|combodd⟩e|0⟩ph1|0⟩ph2) =

  = (𝐸2𝐸1 + 𝑂2𝑂1)|combeven⟩e|0⟩ph1|0⟩ph2 + (𝑂2𝐸1 + 𝐸2𝑂1)|combodd⟩|0⟩ph1|0⟩ph2. (120)
 

 

Using Eq. (119), the final joint state is: 

|Ψf⟩ = |combeven⟩e(|cateven, cateven⟩ph + |catodd, catodd⟩ph) +

+|combodd⟩e(|catodd, cateven⟩ph + |cateven, catodd⟩ph). (121)
 

Post-selecting the electron will create a Bell state of two cat states. 

RM 6.2 Creating entangled GKP states 
 Using the same approach as in RM 6.1, we can entangle two GKP states into a GKP Bell state. 

We consider two GKP states and the 4-component comb-electron state |comb4
0⟩e, as defined in 

Eq. (10). After the interaction, the final joint state is: 

|𝜓final⟩ = 𝑆2𝑆1|comb4
0⟩e|0⟩ph1

GKP|0⟩ph2
GKP. (122) 

|comb4
0⟩e can be written as a superposition of 4 comb electrons with different phases: 

|comb4
0⟩e =

1

4
(|comb(0)⟩e + |comb(𝜋/2)⟩e + |comb(𝜋)⟩e + |comb(3𝜋/2)⟩e),

|comb4
1⟩e =

1

4
(|comb(0)⟩e − 𝑖|comb(𝜋/2)⟩e − |comb(𝜋)⟩e + 𝑖|comb(3𝜋/2)⟩e),

|comb4
2⟩e =

1

4
(|comb(0)⟩e − |comb(𝜋/2)⟩e + |comb(𝜋)⟩e − |comb(3𝜋/2)⟩e),

|comb4
3⟩e =

1

4
(|comb(0)⟩e + 𝑖|comb(𝜋/2)⟩e − |comb(𝜋)⟩e − 𝑖|comb(3𝜋/2)⟩e). (123)

 

For 𝑔Q = √𝜋/2, we can use the GKP’s symmetry and Eq. (32) to achieve: 

𝐷±√𝜋/2|0⟩ph
GKP = 𝑒∓𝑖√𝜋𝑝|0⟩ph

GKP = 𝑋|0⟩ph
GKP = |1⟩ph

GKP, 

𝐷±𝑖√𝜋/2|0⟩ph
GKP = 𝑒±𝑖√𝜋𝑥̂|0⟩ph

GKP = 𝑍|0⟩ph
GKP = |0⟩ph

GKP (124) 

Thus, according to Eqs. (112, 113), after one interaction of a |comb4
0⟩e and a |0⟩ph

GKP state with a 

coupling constant 𝑔Q = √𝜋/2, the resulting joint state is: 

𝑆|comb4
0⟩e|0⟩ph

GKP = 
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=
1

4
(

|comb(0)⟩e𝐷√𝜋/2 + |comb(𝜋/2)⟩e𝐷𝑖√𝜋/2

+|comb(𝜋)⟩e𝐷−√𝜋/2 + |comb(3𝜋/2)⟩𝐷−𝑖√𝜋/2
) |0⟩ph

GKP = 

=
1

4
(
|comb(0)⟩e𝑋 + |comb(𝜋/2)⟩eZ

+|comb(𝜋)⟩eX + |comb(3𝜋/2)⟩Z
) |0⟩ph

GKP = 

=
1

4
((|comb(0)⟩e + |comb(𝜋)⟩e)|1⟩ph

GKP + (|comb(𝜋/2)⟩e + |comb(3𝜋/2)⟩)|0⟩ph
GKP) = 

=
1

4
((|comb4

0⟩e + |comb4
2⟩e)|1⟩ph

GKP + (|comb4
0⟩e − |comb4

2⟩e)|0⟩ph
GKP) = 

1

2√2
(|comb4

0⟩e|+⟩ph
GKP − |comb4

2⟩e|−⟩ph
GKP). (125) 

We can interpret this result as a conditional rotation on the GKP state, while the photonic state is 

conditioned by the electron post-selection result. Similarly, using Eqs. (123, 124) we derive for a 

comb electron |comb4
2⟩: 

𝑆|comb4
2⟩e|0⟩ph

GKP = 

=
1

4
(

|comb(0)⟩e𝐷√𝜋/2 − |comb(𝜋/2)⟩e𝐷𝑖√𝜋/2

+|comb(𝜋)⟩e𝐷−√𝜋/2 − |comb(3𝜋/2)⟩𝐷−𝑖√𝜋/2
) |0⟩ph

GKP = 

=
1

4
(
|comb(0)⟩e𝑋 − |comb(𝜋/2)⟩eZ

+|comb(𝜋)⟩eX − |comb(3𝜋/2)⟩Z
) |0⟩ph

GKP = 

=
1

4
((|comb(0)⟩e + |comb(𝜋)⟩e)|1⟩ph

GKP − (|comb(𝜋/2)⟩e + |comb(3𝜋/2)⟩)|0⟩ph
GKP) = 

=
1

4
((|comb4

0⟩e + |comb4
2⟩e)|1⟩ph

GKP − (|comb4
0⟩e − |comb4

2⟩e)|0⟩ph
GKP) = 

1

2√2
(|comb4

2⟩e|+⟩ph
GKP − |comb4

0⟩e|−⟩ph
GKP). (126) 

From Eq. (126), one can notice that the probability for odd post-selections (|comb4
1⟩, |comb4

3⟩) 
is 0. Thus, according to Eqs. (125, 126), after the interaction of the same comb electron |comb4

0⟩e 
with two different photonic modes, the final state is: 

|Ψf⟩ = 𝑆2𝑆1|comb4
0⟩e|0⟩ph1

GKP|0⟩ph2
GKP = 

=
1

2√2
𝑆2(|comb4

0⟩e|+⟩ph1
GKP|0⟩ph2

GKP − |comb4
2⟩e|−⟩ph1

GKP|0⟩ph2
GKP) = 

=
1

8
(
(|comb4

0⟩e|+⟩ph1
GKP|+⟩ph2

GKP + |comb4
2⟩e|+⟩ph1

GKP|−⟩ph2
GKP)

−(−|comb4
0⟩e|−⟩ph1

GKP|−⟩ph2
GKP + |comb4

2⟩e|−⟩ph1
GKP|+⟩ph2

GKP)
) = 

=
1

8
(
|comb4

0⟩e(|+⟩ph1
GKP|+⟩ph2

GKP + |−⟩ph1
GKP|−⟩ph2

GKP)

+|comb4
2⟩e(|+⟩ph1

GKP|−⟩ph2
GKP − |−⟩ph1

GKP|+⟩ph2
GKP)

) (127) 
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Finally, upon post-selection of the electron energy, the result is a GKP Bell state between the two 

photonic modes, as described in the main text, Eq. (15). 

 

RM 7 Quantum gates for the GKP state with electron combs 
Our method allows not only to create GKP states but also to perform different quantum gates 

on them, including stabilizers, i.e., gates that do not change the ideal GKP states and help in 

quantum error-correction schemes. For an ideal GKP state, the stabilizers are: 

𝑠1 = 𝐷±√2𝜋, 𝑠2 = 𝐷±√2𝜋𝑖. (128) 

𝑋-gate can be found by the following formula: 

𝑋 = 𝐷±√𝜋/2. (129) 

𝑍-gate can be found by the following formula: 

𝑍 = 𝐷±𝑖√𝜋/2. (130) 

All these gates and stabilizers can be created using interactions with comb electrons with the 

coupling 𝑔Q = ±√2𝜋,±√2𝜋𝑖 for the stabilizers, 𝑔Q = ±√𝜋/2 for 𝑋 gate, and 𝑔Q = ±𝑖√𝜋/2 for 

𝑍 gate. However, such operations significantly decrease the fidelity of the created (non-ideal) GKP 

state. To create the operation, which will increase the fidelity of the GKP state, we use post-

selection. We need to interact with an even comb-electron |combeven⟩ with a coupling parameter 

𝑔Q and post-select even energies. As described in this document, the light state due to this 

interaction will change in the following way: 

|𝜓f⟩ph = (𝐷𝑔Q + 𝐷−𝑔Q)|𝜓i⟩ph. (131) 

For 𝑔Q = √2𝜋 and 𝑔Q = 𝑖√2𝜋, we get the stabilizers of GKP states. For 𝑔Q = √𝜋/2, we get the 

𝑋 gate, and for 𝑔Q = 𝑖√𝜋/2, we get the 𝑍 gate. If we want to implement a 𝑌 gate, we can apply 𝑋 

and 𝑍 gates consequently (i.e., 𝑋 ⋅ 𝑍, which gives 𝑌 gate up to a global phase), or use 𝑔Q =

√𝜋/2 + 𝑖√𝜋/2 with an even post-selection. 
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