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This supplementary information file contains additional detail about the derivations and 

numerical calculations presented in the main text. In section I we solve the time-dependent 

Schrodinger equation (TDSE) for an electron interacting with a quantum state of light, to obtain 

the density matrix of the electron (Eq. (3) in the main text). In section II, we obtain a formula for 

the electric dipole of an atom driven by a quantum state of light, derived under the SFA (Eq. (6) 

in the main text). In section III, we derive the 𝑃(𝛼) and 𝑃(𝐸) distributions for squeezed coherent 

light (Eq. (7.a) in the main text). In section IV we derive the coupled algebraic equations for the 

electronic trajectories, in case the driver is squeezed coherent. In section V we show that within 

the qSFA theory, squeezing is formally equivalent to an effective photon statistics force, 

presented in the main text (Eq. (10)). In section VI we derive Eq. (11) in the main text.  
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I. Solution of the time-dependent Schrodinger equation in a quantum-optical setting 

Here we develop a general theory of the interaction between strong non-perturbative quantum 

light and an initially bound electron. To do this we write general Schrodinger equation for the 

joint density matrix of light and electron: 

 
𝑖ℏ
𝜕𝜌

𝜕𝑡
= 𝐻𝜌 − 𝜌𝐻 (I.1) 

where the Hamiltonian is: 

 𝐻 = 𝐻A + 𝐻F + 𝒅 ⋅ �̂� (I.2) 

and  𝐻F = ∑ ℏ𝜔 𝑎𝑘𝜎
† 𝑎𝑘𝜎𝑘𝜎 . We aim to solve this equation to describe the emission of an electron 

in an external electromagnetic field 𝑨 and static potential 𝑈. We employ the interaction picture: 

𝜌 → 𝑒−
𝑖𝐻𝐹
ℏ
𝑡𝜌𝑒

𝑖𝐻𝐹
ℏ
𝑡, 𝐻 → 𝑒−

𝑖𝐻𝐹
ℏ
𝑡𝐻𝑒

𝑖𝐻𝐹
ℏ
𝑡
, to obtain the following Schrodinger equation: 

 
𝑖ℏ
𝜕𝜌

𝜕𝑡
= [𝐻0, 𝜌] (I.3) 

where 𝐻0 = 𝐻A + 𝒅 ⋅ 𝑬 and 𝑬(𝑡) = 𝑖 ∑ √
ℏω

2𝑉𝜀0
𝒌,𝜎 𝜺(𝑎𝑘𝜎𝑒

−𝑖𝜔𝑡 − 𝑎𝑘𝜎
† 𝑒𝑖𝜔𝑡). We consider the 

following initial conditions for the density matrix: 

 

{
 

 
𝜌(0) = 𝜌𝐴(0) ⊗ 𝜌𝐹(0)

𝜌𝐴(0) = |𝜓0⟩⟨𝜓0|

𝜌𝐹(0) = ∫𝑑
2𝛼𝑑2𝛽 ⋅ 𝑃(𝛼, 𝛽∗)

|𝛼⟩⟨𝛽|

⟨𝛽|𝛼⟩ 

 (I.4) 

Using the linearity of density matrix equation, we write: 

 
𝜌(𝑡) ≡ ∫𝑑2𝛼𝑑2𝛽 ⋅ 𝑃(𝛼, 𝛽∗) 𝜌𝛼𝛽(𝑡) (I.5) 

 
𝑖ℏ
𝜕𝜌𝛼𝛽(𝑡)

𝜕𝑡
= [𝐻0, 𝜌𝛼𝛽(𝑡)]  

 
𝜌𝛼𝛽(0) = |𝜓0⟩⟨𝜓0| ⊗

|𝛼⟩⟨𝛽|

⟨𝛽|𝛼⟩ 
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We now employ coherent shift operators with coherent parameters 𝛼 and 𝛽 (denoted by 𝐷(𝛼) 

and 𝐷(𝛽)) to define  

 �̃�𝛼𝛽 = 𝐷
†(𝛼)𝜌𝛼𝛽𝐷(𝛽) (I.6) 

 
�̃�𝛼𝛽(0) = |𝜓0⟩⟨𝜓0| ⊗

|0⟩⟨0|

⟨𝛽|𝛼⟩ 
  

 
𝑖ℏ
𝜕�̃�𝛼𝛽

𝜕𝑡
= 𝐷†(𝛼)𝐻0𝐷(𝛼)�̃�𝛼𝛽 − �̃�𝛼𝛽𝐷

†(𝛽)𝐻0𝐷(𝛽),  

Using 𝐷†�̂�𝐷 = 𝛼 + �̂� (a property of coherent shift operators), we define: 

 
𝑖ℏ
𝜕�̃�𝛼𝛽

𝜕𝑡
= 𝐻𝛼�̃�𝛼𝛽 − �̃�𝛼𝛽𝐻𝛽 + [𝒅 ⋅ �̂�, �̃�𝛼𝛽]  

 𝐻𝛼 = 𝐻A + 𝒅 ⋅ 𝑬𝜶(𝑡) (I.7) 

 𝐻𝛽 = 𝐻A + 𝒅 ⋅ 𝑬𝜷(𝑡)  

where 𝑬𝛼(𝑡) = ⟨𝛼|�̂�|𝛼⟩, 𝑬𝛽(𝑡) = ⟨𝛽|�̂�|𝛽⟩ and 𝐻𝐴 is the field free atomic Hamiltonian. 

Assuming the density matrices of light and matter are separable throughout the process (i.e., light 

and matter are not entangled): 

 �̃�𝛼𝛽(𝑡) = |𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡) (I.8) 

Here, |𝜙𝛼(𝑡)⟩ and |𝜙𝛽(𝑡)⟩ are solutions of the semi-classical Schrodinger’s equation: 

 
𝑖ℏ
𝜕

𝜕𝑡
|𝜙𝑎⟩ = 𝐻𝛼|𝜙𝑎⟩ (I.9) 

Plugging equations (I.8) and (I.9) the above definitions into equation (I.7): 
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𝑖ℏ
𝜕

𝜕𝑡
(|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡))

= 𝐻𝛼 (|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡))

− (|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡))𝐻𝛽

+ [𝒅 ⋅ �̂�, (|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡))] 

(I.10) 

 
|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)|𝑖ℏ

𝜕

𝜕𝑡
(�̃�light(𝑡)) + 𝐻𝛼|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡)

− |𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)|𝐻𝛽⊗ �̃�light(𝑡)

= 𝐻𝛼 (|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡))

− (|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡))𝐻𝛽

+ [𝒅 ⋅ �̂�, (|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗ �̃�light(𝑡))] 

 

 
|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)|𝑖ℏ

𝜕

𝜕𝑡
(�̃�light(𝑡))

= 𝒅|𝜙𝛼(𝑡)⟩ ⋅ �̂� (⊗ �̃�light(𝑡)) ⟨𝜙𝛽(𝑡)|

− |𝜙𝛼(𝑡)⟩ (�̃�light(𝑡)) ⟨𝜙𝛽(𝑡)|𝒅 ⋅ �̂� 

 

Tracing out the electronic degree of freedom, we obtain the final equation for time propagation 

of the density matrix of light: 

 
𝑖ℏ
𝜕�̃�light

𝜕𝑡
= 𝒅𝛼�̂��̃�light − 𝒅𝜷�̃�light�̂� (I.11) 

 

Perturbative solution of the time dependent Schrodinger’s equation 

The electric field operator is given by  

 

𝑬(𝑡) = 𝑖∑√
ℏ𝜔

2𝑉휀0
𝒌,𝜎

𝜺(𝑎𝑘𝜎𝑒
−𝑖𝜔𝑡 − 𝑎𝑘𝜎

† 𝑒𝑖𝜔𝑡) (I.12) 
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We decompose the density matrix of light into separate modes and employ equation (I.11): 

 �̃�light =∏�̃�𝑘𝜎
𝑘𝜎

 (I.13) 

 
�̃�𝑘𝜎 = −

𝑖

ℏ
[∫ (𝒅𝛼(𝜏) ⋅ �̂�𝑘𝜎�̃�𝑘𝜎(𝜏) − 𝒅𝛽(𝜏) ⋅ �̃�𝑘𝜎(𝜏)�̂�𝑘𝜎)𝑑𝜏

𝑡

0

]  

The initial condition is given by �̃�𝑘𝜎(0) =
|0⟩⟨0|

⟨𝛽|𝛼⟩
. To first order in the light-matter coupling 

strength, 

 
�̃�𝑘𝜎 = �̃�𝑘𝜎(0) −

𝑖

ℏ
[∫ (𝒅𝛼(𝜏) ⋅ �̂�𝑘𝜎�̃�𝑘𝜎(0) − 𝒅𝛽(𝜏) ⋅ �̃�𝑘𝜎(0)�̂�𝑘𝜎)𝑑𝜏

𝑡

0

] (I.14) 

We employ the 1st order solution to obtain the 2nd order solution: 

 
�̃�𝑘𝜎(𝜏) = �̃�𝑘𝜎(0) −

𝑖

ℏ
[∫ (𝒅𝛼(𝜏) ⋅ �̂�𝑘𝜎�̃�𝑘𝜎(0) − 𝒅𝛽(𝜏) ⋅ �̃�𝑘𝜎(0)�̂�𝑘𝜎)𝑑𝜏

𝑡

0

]

+ (−
𝑖

ℏ
)
2

[∫ (𝒅𝛼(𝜏1)
𝑡

0

⋅ �̂�𝑘𝜎(𝜏1)∫ (𝒅𝛼(𝜏2) ⋅ �̂�𝑘𝜎(𝜏2)�̃�𝑘𝜎(0) − 𝒅𝛽(𝜏2)
𝜏1

0

⋅ �̃�𝑘𝜎(0)�̂�𝑘𝜎(𝜏2))𝑑𝜏2 − 𝒅𝛽(𝜏1)

⋅ ∫ (𝒅𝛼(𝜏2) ⋅ �̂�𝑘𝜎(𝜏2)�̃�𝑘𝜎(0) − 𝒅𝛽(𝜏2)
𝜏1

0

⋅ �̃�𝑘𝜎(0)�̂�𝑘𝜎(𝜏2))𝑑𝜏2 �̂�𝑘𝜎(𝜏1))𝑑𝜏1 ] 

(I.15) 

The energy expectation value is given by: 

 휀 =∑ℏωTr[𝜌𝑘𝜎(𝜏)𝑎𝑘𝜎
† 𝑎𝑘𝜎]

𝑘𝜎

=∑ℏωTr[𝐷(𝛼)�̃�𝑘𝜎(𝜏)𝐷
†(𝛽)𝑎𝑘𝜎

† 𝑎𝑘𝜎]

𝑘𝜎

 

 

(I.16) 
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휀 =∑

𝜔2

2𝑉휀0
 [∫ ((𝒅𝛼(𝜏1) ⋅ 𝜺𝜎)𝑒

𝑖𝜔𝜏1∫ (𝒅𝛽(𝜏2) ⋅ 𝜺𝜎)𝑒
−𝑖𝜔𝜏2𝑑𝜏2

𝜏1

0

𝑡

0𝑘𝜎

+ (𝒅𝛽(𝜏1) ⋅ 𝜺𝜎)𝑒
−𝑖𝜔𝜏1 ∫ (𝒅𝛼(𝜏2) ⋅ 𝜺𝜎)𝑒

𝑖𝜔𝜏2𝑑𝜏2

𝜏1

0

)𝑑𝜏1 ] 

 

Finally, the spectrum is given by 

 𝑑휀

𝑑𝜔
=∑∫𝑑Ω

𝜔4

2(2𝜋)3𝑐3휀0
[∫ ((𝒅𝛼(𝜏1) ⋅ 𝜺𝜎)𝑒

𝑖𝜔𝜏1 ∫ (𝒅𝛽(𝜏2) ⋅ 𝜺𝜎)𝑒
−𝑖𝜔𝜏2𝑑𝜏2

𝜏1

0

𝑡

0𝜎

+ (𝒅𝛽(𝜏1) ⋅ 𝜺𝜎)𝑒
−𝑖𝜔𝜏1∫ (𝒅𝛼(𝜏2) ⋅ 𝜺𝜎)𝑒

𝑖𝜔𝜏2𝑑𝜏2

𝜏1

0

)𝑑𝜏1 ] 

(I.17) 

 𝑑휀

𝑑𝜔
=

𝜔4

6𝜋2𝑐3휀0
[∫ 𝑑𝜏1 

𝑡

0

∫ 𝑑𝜏2

𝜏1

0

(𝑒𝑖𝜔𝜏1𝒅𝛼(𝜏1) ⋅ 𝑒
−𝑖𝜔𝜏2𝒅𝛽(𝜏2) + 𝑒

−𝑖𝜔𝜏1𝒅𝛽(𝜏1)

⋅ 𝑒𝑖𝜔𝜏2𝒅𝛼(𝜏2))] 

 

Employing the mathematical identity 

 
∫ 𝑑𝜏1

𝑡

0

∫ 𝑑𝜏2

𝜏1

0

(𝑓(𝜏1)𝑔(𝜏2) + 𝑓(𝜏2)𝑔(𝜏1)) = (∫ 𝑑𝜏
𝑡

0

𝑓(𝜏))(∫ 𝑑𝜏
𝑡

0

𝑔(𝜏)) (I.18) 

We arrive at the expression 
𝑑𝜀

𝑑𝜔
=

𝜔4

6𝜋2𝑐3𝜀0
𝒅𝛼(𝜔) ⋅ 𝒅𝛽

∗ (𝜔) where 𝒅𝛼(𝜔) = ∫𝒅𝛼(𝜏1)𝑒
𝑖𝜔𝜏1𝑑𝜔 for 

the emission of �̃�𝛼𝛽. The total emission is given by the integration: 

 𝑑𝜖

𝑑𝜔
=

𝜔4

6𝜋2𝑐3𝜖0
 ∫𝑑2𝛼𝑑2𝛽𝑃(𝛼, 𝛽∗) (𝑑𝛼(𝜔) ⋅ 𝑑𝛽

∗ (𝜔)) (I.19) 

To 1st order in light-matter coupling (i.e., neglecting any radiation reaction effect), the density 

matrix of the electron is given by: 

 
𝜌𝑡𝑜𝑡𝑎𝑙 = ∫𝑑

2𝛼 𝑑2𝛽 𝑃𝛼𝛽|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗
|𝛼⟩⟨𝛽|

⟨𝛽|𝛼⟩
 (I.20) 

 
𝜌𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = TrF [∫𝑑

2𝛼 𝑑2𝛽 𝑃𝛼𝛽|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| ⊗
|𝛼⟩⟨𝛽|

⟨𝛽|𝛼⟩
] 
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𝜌𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = ∫𝑑

2𝛼𝑑2𝛽 𝑃(𝛼, 𝛽∗)|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)|  

II. Quantum-optical dipole moment under strong-field approximation 

In this section, we derive the formula for the dipole moment expectation value for an electron 

driven by a quantum state of light with arbitrary photon statistics.  

Interaction with a coherent state |𝛼⟩ 

We consider the interaction of an atomic system with a single bound state with a coherent state 

of light. The ionization potential of this atomic system is denoted by 𝐼𝑝. The driving light 

occupies a coherent state |𝛼⟩ = |𝛼𝑥 + 𝑖𝛼𝑦⟩ (where 𝛼𝑥 and 𝛼𝑦 are real valued parameters), 

corresponding to a classical electromagnetic wave, whose vector potential is given by 

 
𝑨𝛼(𝑡) =

𝜖(1)

𝜔
(𝛼𝑒−𝑖𝜔𝑡 + 𝛼∗𝑒𝑖𝜔𝑡)�̂� =

2𝜖(1)

𝜔
[𝛼𝑥 cos(𝜔𝑡) + 𝛼𝑦 sin(𝜔𝑡)]�̂� (II.1) 

Here, �̂� is a unit vector parallel to the z axis. The electric field of this coherent state is denoted 

𝐸𝛼(𝑡) = −𝜕𝑨𝛼 𝜕𝑡⁄ ⋅ �̂�, and the time-dependent Schrodinger’s equation (TDSE) of this atomic 

system is given by  

 
𝑖ℏ
𝜕|𝜙𝛼(𝑡)⟩

𝜕𝑡
= [−

1

2𝑚
∇2 + 𝑈(𝑧) − 𝑒𝑧𝐸𝛼(𝑡)] |𝜙𝛼(𝑡)⟩ (II.2) 

Here, |𝜙𝛼(𝑡)⟩ is the time dependent wavefunction of the system, and 𝑈(𝑧) is the atomic 

potential. Initially, the system is in its atomic ground state, denoted by |0⟩. Under the standard 

approximations of the SFA theory 1, |𝜙𝛼(𝑡)⟩ can be written as 

 
|𝜙𝛼(𝑡)⟩ = 𝑒

𝑖
ℏ
𝐼𝑝𝑡 (𝑎(𝑡)|0⟩ + ∫𝑏𝛼(𝒗, 𝑡)𝑑

3𝒗 ⋅ |𝒗⟩) (II.3) 

We substitute (II.3) into (II.2) and to reformulate the TDSE in terms of kinetic momentum state 

amplitudes: 

 𝜕𝑏𝛼(𝒗, 𝑡)

𝜕𝑡
= −

𝑖

ℏ
(
𝒗2

2𝑚
+ 𝐼𝑝)𝑏𝛼(𝒗, 𝑡) − 𝑒𝐸𝛼(𝑡)

𝜕𝑏𝛼(𝒗, 𝑡)

𝜕𝑣𝑧
+
𝑖

ℏ
𝑒𝑑𝑧(𝒗)𝐸𝛼(𝑡) (II.4) 
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Here,  𝑑𝑧(𝒗) = ⟨𝒗|𝑧|0⟩ and we have already employed the fact that the light field is linearly 

polarized, in writing 𝐸𝛼(𝑡) as a scalar function and deriving 𝑏𝛼 with respect to 𝑣𝑧 (the velocity 

component parallel to the polarization of the driving field). Assuming that the ground state is 

non-depleted (𝑎(𝑡) = 1), the state of the atom is completely determined by the 𝑏𝛼(𝒗, 𝑡) 

continuum state amplitudes. The exact solution for 𝑏(𝒗, 𝑡) is  

 
𝑏(𝒗, 𝑡) =

𝑖

ℏ
∫ 𝑑𝑡′𝑒𝐸𝛼(𝑡′)𝑑𝑧(𝒗 + 𝑒𝑨𝛼(𝑡) − 𝑒𝑨𝛼(𝑡

′))
𝑡

0

⋅ exp (−
𝑖

ℏ
∫ 𝑑𝑡′′
𝑡

𝑡′
[
(𝒗 + 𝑒𝑨𝛼(𝑡) − 𝑒𝑨𝛼(𝑡

′′))
2

2
+ 𝐼𝑝]) 

(II.5) 

Neglecting bound-bound and continuum-continuum transitions, the dipole moment expectation 

value 𝑧𝛼(𝑡) = ⟨𝜙𝛼(𝑡)|𝑧|𝜙𝛼(𝑡)⟩ is given by 

 
𝑧𝛼(𝑡) = ∫𝑑

3𝒗𝑑𝑧
∗(𝒗)𝑏(𝒗, 𝑡) + 𝑐. 𝑐. (II.6) 

We define canonical momentum 𝒑: 

 𝒑 = 𝒗 + 𝑒𝑨𝛼(𝑡) (II.7) 

This results in the final semi-classical equation for the dipole moment of an electron driven by a 

coherent state |𝛼⟩: 

𝑧𝛼(𝑡) =
𝑖

ℏ
∫𝑑3𝒑∫ 𝑑𝑡′𝑒𝐸𝛼(𝑡)𝑑𝑧(𝒑 − 𝑒𝑨𝛼(𝑡

′))𝑑𝑧
∗(𝒑 − 𝑒𝑨𝛼(𝑡))

𝑡

0

⋅ exp (−
𝑖

ℏ
𝑆𝛼(𝒑, 𝑡, 𝑡

′)) + c. c. 

(II.8) 

𝑆𝛼(𝒑, 𝑡, 𝑡
′) = ∫ 𝑑𝑡′′ (

[𝒑 − 𝑒𝑨(𝑡′′)]2

2
+ 𝐼𝑝)

𝑡

𝑡′
 (II.9) 

The function 𝑆𝛼(𝒑, 𝑡, 𝑡
′) is the semi-classical action of an electron driven by a coherent state |𝛼⟩. 

The Ω frequency component of 𝑧𝛼(𝑡) can be evaluated semi-analytically, by employing the 

saddle point approximation: 
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{
  
 

  
 
𝜕𝑆𝛼
𝜕𝒑

= 𝟎

𝜕𝑆𝛼
𝜕𝑡′

= 0

𝜕𝑆𝛼
𝜕𝑡

= ℏΩ

 (II.10) 

The system of equations (II.10) defines the three physically meaningful (and experimentally 

observable) stationary parameters [𝒑 = 𝒑Ω, 𝑡
′ = 𝑡0Ω, 𝑡 = 𝑡1Ω], associated with the emission of 

the frequency Ω. Here, 𝒑 is inferred as the canonical momentum of a three-step electronic 

trajectory, 𝑡0 is the time of ionization, and 𝑡1 is time of recombination. We emphasize that this 

solution is completely semi-classical and does not include the effect of vacuum fluctuations (i.e., 

noise associated with the quantum-mechanical uncertainty principle).  

Interaction with an arbitrary quantum state of light under the strong-field approximation 

Next, we consider the interaction of the same atomic system with a single mode of light with 

arbitrary quantum statistics. The density matrix (quantum state) of the driving light is specified 

by generalized Glauber representation 𝑃(𝛼, 𝛽), 

 
�̂�𝑑𝑟𝑖𝑣𝑒 = ∫𝑑

2𝛼 𝑑2𝛽 𝑃(𝛼, 𝛽)
|𝛼⟩⟨𝛾∗|

⟨𝛽∗|𝛼⟩ 
 (II.11) 

In the previous supplementary section, we have obtained that the density matrix of an electron 

driven by �̂�𝑑𝑟𝑖𝑣𝑒 is given (to lowest order in light matter coupling) by 

 
𝜌𝑒 = ∫𝑑

2𝛼 𝑑2𝛽 𝑃(𝛼, 𝛽∗)|𝜙𝛼(𝑡)⟩⟨𝜙𝛽(𝑡)| (II.12) 

where |𝜙𝛼(𝑡)⟩ solves equation (II.2). In this case the dipole moment is given by 

 
𝑧(𝑡) = Tr[𝜌𝑒(𝑡)𝑥] = ∫𝑑

2𝛼 𝑑2𝛽 𝑃(𝛼, 𝛽∗)⟨𝜙𝛽(𝑡)|𝑧|𝜙𝛼(𝑡)⟩ (II.13) 

Employing equation (II.3) in the main text, and again neglecting bound-bound and continuum-

continuum transitions (a standard assumption of the SFA theory) we have 

 
⟨𝜙𝛽(𝑡)|𝑧|𝜙𝛼(𝑡)⟩ = ∫𝑏𝛼(𝒗, 𝑡)𝑑

3𝒗 ⋅ ⟨0|𝑧|𝒗⟩ + ∫𝑏𝛽
∗(𝒗, 𝑡)𝑑3𝒗 ⋅ ⟨𝒗|𝑧|0⟩ 

(II.14) 
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Notably, by keeping only bound-continuum transitions, we can decompose ⟨𝜙𝛽(𝑡)|𝑧|𝜙𝛼(𝑡)⟩ into 

terms that depends separately on 𝛼 and 𝛽. This separation is exploited to simplify supplementary 

equation (II.3):  

 
𝑧(𝑡) = ∫𝑑2𝛼 (∫𝑑2𝛽 𝑃(𝛼, 𝛽∗))∫𝑏𝛼(𝒗, 𝑡)𝑑

3𝒗 ⋅ ⟨0|𝑧|𝒗⟩

+ ∫𝑑2𝛽 (∫𝑑2𝛼 𝑃(𝛼, 𝛽∗))∫𝑏𝛽
∗(𝒗, 𝑡)𝑑3𝒗 ⋅ ⟨𝒗|𝑧|0⟩ 

(II.15) 

We employ the general property of the generalized Glauber representation 𝑃(𝛼, 𝛽∗) = 𝑃(𝛽, 𝛼∗). 

This property stems from the connection between the generalized Glauber representation and the 

Husimi quasi-probability distribution 𝑄(𝛼) =
1

𝜋
⟨𝛼|𝜌|𝛼⟩: 

 
𝑃(𝛼, 𝛽) =

1

4𝜋
exp [−

|𝛼 − 𝛽∗|2

4
]𝑄 (

𝛼 + 𝛽∗

2
) 

(II.16) 

Through this relation, we have ∫𝑑2𝛽 𝑃(𝛽, 𝛼∗) = ∫ 𝑑2𝛽 𝑃(𝛼, 𝛽∗), hence,  

 
𝑧(𝑡) = ∫𝑑2𝛼 (∫𝑑2𝛽 𝑃(𝛼, 𝛽∗))∫𝑏𝛼(𝒗, 𝑡)𝑑

3𝒗 ⋅ ⟨0|𝑧|𝒗⟩ + 𝑐. 𝑐. 
(II.17) 

By equation (II.6) in the main text, this reduces to 

 
𝑧(𝑡) = ∫𝑑2𝛼𝑃(𝛼)𝑧𝛼(𝑡) 

(II.18) 

Where 𝑧𝛼(𝑡) is the semi-classical dipole moment expectation value for a coherent drive |𝛼⟩, and 

𝑃(𝛼) ≡ ∫𝑑2𝛽 𝑃(𝛼, 𝛽∗) and is not to be confused with the standard Glauber representation. 

𝑧𝛼(𝑡) can be obtained either by solving the time-dependent Schrodinger’s equation, or directly 

from the semi-classical SFA formula (II.8), to arrive at the final expression: 

 
𝑧(𝑡) =

𝑖

ℏ
∫𝑑2𝛼 ∫𝑑3𝒑∫ 𝑑𝑡′𝑒𝐸𝛼(𝑡)𝑑𝑧(𝒑 − 𝑒𝑨𝛼(𝑡

′))𝑑𝑧
∗(𝒑 − 𝑒𝑨𝜶(𝑡))

𝑡

0

⋅ 𝑃(𝛼)exp(−
𝑖

ℏ
𝑆𝛼(𝒑, 𝑡, 𝑡

′)) + 𝑐. 𝑐. 

(II.19) 
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III. Derivation of 𝑷(𝜶) for squeezed coherent light 

III. A. Integration of 𝑃(𝛼, 𝛽∗)  

In this section, we derive the distribution function 𝑃(𝛼) = ∫𝑑2𝛽𝑃(𝛼, 𝛽∗) for the case of 

squeezed coherent states of light. For a squeezed coherent state of light |𝛾, 𝑟⟩ where 𝛾 is the 

coherent parameter and 𝑟 is the squeezing parameter, the Husimi 𝑄(𝛼) distribution is given by 2 

 
𝑄(𝛼) =

1

𝜋 cosh(𝑟)
exp(−2

(𝛼𝑦 − 𝛾𝑦)
2

1 + 𝑒2𝑟
 − 2

(𝛼𝑥 − 𝛾𝑥)
2

1 + 𝑒−2𝑟
 ) (III.1) 

The generalized Glauber representation of this state is constructed through 

 
𝑃(𝛼, 𝛽) =

1

4𝜋
𝑒−|𝛼−𝛽

∗|2 4⁄ 𝑄 (
𝛼 + 𝛽∗

2
) (III.2) 

The resulting distribution is: 

 
𝑃(𝛼, 𝛽∗) = exp [−

(𝛼𝑥 − 𝛽𝑥)
2

4
−
(𝛼𝑥 + 𝛽𝑥 − 2𝛾𝑥)

2

2 + 2𝑒−2𝑟
−
(𝛼𝑦 − 𝛽𝑦)

2

4

−
(𝛼𝑦 + 𝛽𝑦 − 2𝛾𝑦)

2

2 + 2𝑒2𝑟
] 

(III.3) 

Here, 𝛼 = 𝛼𝑥 + 𝑖𝛼𝑦 (and similarly 𝛽 and 𝛾). We explicitly calculate 𝑃(𝛼) = ∫𝑑2𝛽𝑃(𝛼, 𝛽∗): 

 
𝑃(𝛼) =

1

4𝜋2 cosh(𝑟)
∫𝑑𝛽𝑥 exp [−

(𝛼𝑥 − 𝛽𝑥)
2

4

−
(𝛼𝑥 + 𝛽𝑥 − 2𝛾𝑥)

2

2 + 2𝑒−2𝑟
]∫𝑑𝛽𝑦 exp [−

(𝛼𝑦 − 𝛽𝑦)
2

4

−
(𝛼𝑦 + 𝛽𝑦 − 2𝛾𝑦)

2

2 + 2𝑒2𝑟
] =

1

4𝜋2 cosh(𝑟)
 𝐼1𝐼2 

(III.4) 

 
𝐼1 = ∫𝑑𝛽𝑥 exp [−

(𝛼𝑥 − 𝛽𝑥)
2

4
−
(𝛼𝑥 + 𝛽𝑥 − 2𝛾𝑥)

2

2 + 2𝑒−2𝑟
]  
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𝐼2 = ∫𝑑𝛽𝑦 exp [−

(𝛼𝑦 − 𝛽𝑦)
2

4
−
(𝛼𝑦 + 𝛽𝑦 − 2𝛾𝑦)

2

2 + 2𝑒2𝑟
]  

These final expression for 𝑃(𝛼) is 

 

𝑃(𝛼) =
1

𝜋 cosh(𝑟)

𝑒
−
2(𝛼𝑦−𝛾𝑦)

2

3+𝑒2𝑟
−
2(𝛼𝑥−𝛾𝑥)

2

3+𝑒−2𝑟 (1 + 𝑒2𝑟)

√3 + 10𝑒2𝑟 + 3𝑒4𝑟
 

(III.5) 

III. B. Infinite volume of quantization  

Let us take the limit 𝜖(1) → 0 and 𝑉 → ∞ (these are the single-photon amplitude and 

quantization volume, respectively). Within this limit, the 𝑃(𝛼) distribution of a coherent state |𝛾⟩ 

approaches a Dirac delta function 𝛿(𝛼 − 𝛾), and so, |𝛾⟩ becomes equivalent to a classical 

electromagnetic field 𝐸𝛾(𝑡). Additionally, taking this limit lifts the ambiguity in the relation 

between dimensionless coherent parameters and electric field amplitudes 𝐸 = 2𝜖(1)𝛼, which in 

principle depends on the frequency and volume of quantization (𝜖(1) = √ℏ𝜔 2𝜖0𝑉⁄ ). Hence, we 

also exploit this limit to reformulate the distribution 𝑃(𝛼) with a distribution 𝑃(𝐸) that does not 

depend on the quantization volume. 

Throughout this section, the squeezing parameter 𝑟 is assumed to be real and positive. If one 

wishes to change the relative squeezing phase, it can be done by changing the phase of the pump.  

We consider the 𝑃(𝛼) distribution of the state |𝛾, 𝑟⟩ (equation (III.5)). The number of photons in 

such a state is given by  

 𝑁 = ⟨𝛾, 𝑟|�̂�|𝛾, 𝑟⟩ = |𝛾|2 + sinh2(𝑟) (III.6) 

The intensity of this beam is given by  

 
𝐼 ≡

𝑐ℏ𝜔

𝑉
𝑁 ≡

𝑐ℏ𝜔

𝑉
(|𝛾|2 + sinh2(𝑟)) ≡ 𝐼𝑐𝑜ℎ + 𝐼𝑣𝑎𝑐 

(III.7) 

Where we have defined 𝐼𝑐𝑜ℎ =
𝑐ℏ𝜔

𝑉
|𝛾|2 and 𝐼𝑣𝑎𝑐 =

𝑐ℏ𝜔

𝑉
sinh2(𝑟), and 𝑉 is the quantization 

volume. The squeezing parameter 𝑟 can be reformulated as 𝑟 = asinh(±√
𝑉𝐼𝑣𝑎𝑐

𝑐ℏ𝜔
), where the sign 
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of r determines the type of squeezing (plus/minus for phase/amplitude, respectively). The electric 

field of the squeezed coherent state |𝛾, 𝑟⟩ is given by 𝐸(𝑡) = 2𝜖(1)[−𝛾𝑥 s𝑖𝑛(𝜔𝑡) + 𝛾𝑦 c𝑜𝑠(𝜔𝑡)], 

hence, we preform a substitution of integration variables in from dimensionless coherent 

parameters to electric field quadratures, 𝐸𝛼𝑥 = 2𝜖
(1)𝛼𝑥 and 𝐸𝛼𝑦 = 2𝜖

(1)𝛼𝑦.  

Let us perform the substitution: 

 

𝑒
−
2(𝛼𝑦−𝛾𝑦)

2

3+𝑒2𝑟
−
2(𝛼𝑥−𝛾𝑥)

2

3+𝑒−2𝑟 = 𝑒
−
2(𝐸𝛼𝑦−𝐸𝛾𝑦)

2

(2𝜖(1))
2
(3+𝑒2𝑟)

−
2(𝐸𝛼𝑥−𝐸𝛾𝑥)

2

(2𝜖(1))
2
(3+𝑒−2𝑟) = 

(III.8) 

 

𝑒2𝑟 = 𝑒
2 asinh(√

𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔

)
= 1 + 2

𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔

+ 2√(
𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔

)
2

+
𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔

 

 

 

𝑒−2𝑟 = 𝑒
−2asinh√

𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔 = 1 + 2

𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔

− 2√(
𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔

)
2

+
𝑉𝐼𝑣𝑎𝑐
𝑐ℏ𝜔

 

 

Plugging the single photon amplitude 𝜖(1) = √
ℏ𝜔

2𝜖0𝑉
 , and taking the limit 𝑉 → ∞, we have: 

 (2𝜖(1))
2
(3 + 𝑒−2𝑟) → 0 (III.9) 

 2

(2𝜖(1))2(3 + 𝑒2𝑟)
→

1

2|𝐸𝑣𝑎𝑐|2
 

 

where 𝐸𝑣𝑎𝑐  fulfills 𝐼𝑣𝑎𝑐 =
1

2
𝜖0𝑐|𝐸𝑣𝑎𝑐|

2. Hence, 𝑃(𝐸𝛼) = 𝑃 (𝐸𝛼𝑥 + 𝑖𝐸𝛼𝑦) becomes   

 

𝑃(𝐸𝛼) =
1

𝑛𝑜𝑟𝑚
 𝑒
−
(𝐸𝛼𝑦−𝐸𝛾𝑦)

2

2|𝐸𝑣𝑎𝑐|2  𝛿(𝐸𝛼𝑥 − 𝐸𝛾𝑥) 

(III.10) 

Thus, the final equation for 𝑧(𝑡), the SFA dipole moment of an atom driven by a squeezed 

coherent state |𝛾, 𝑟⟩ is given by 

 

𝑧(𝑡) =
1

√2𝜋|𝐸𝑣𝑎𝑐|
∫𝑑𝐸𝛼𝑦  𝑒

−
(𝐸𝛼𝑦−𝐸𝛾𝑦)

2

2|𝐸𝑣𝑎𝑐|2 𝑧𝐸𝛼𝑦 ,𝐸𝛾𝑥(𝑡) 

(III.11) 
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IV. Derivation of the coupled algebraic equations 

I.V.A. Saddle point approximation 

In this section, we derive the coupled algebraic equations for the dipole moment. The quantum-

optical analogue of the semi-classical action is given by 

 
𝑆𝑞(𝒑, 𝑡′, 𝑡, 𝛼)⏟        

quantum−optical action

= ∫ 𝑑𝑡′′ (
[𝒑 − 𝑒𝑨𝛼(𝑡

′′)]2

2
+ 𝐼𝑝)

𝑡

𝑡′⏟                    
semi−classical action

+ 𝑖 log(𝑃(𝛼))⏟      
photon statistics

 
(IV.1) 

The emission of high-order harmonics at frequencies Ω = 𝑛𝜔 will mainly originate from the 

stationary points of 𝑆𝑞(𝜿𝑞) − ℏΩ𝑡 with respect to all variables 𝜿𝑞 = [𝑝, 𝑡
′, 𝑡, 𝛼], which satisfy 

the condition ∇𝜿𝑞(𝑆𝑞(𝜿𝑞) − ℏΩ𝑡) = 0. For the case of squeezed coherent light |𝛾, 𝑟⟩, we have  

𝑆𝑞(𝒑, 𝑡
′, 𝑡, 𝛼) = −2𝑖

(𝛼𝑥 − 𝛾𝑥)
2

3 + 𝑒−2𝑟
− 2𝑖

(𝛼𝑦 − 𝛾𝑦)
2

3 + 𝑒2𝑟
+∫ 𝑑𝑡′′ (

[𝑝 − 𝑒𝐴𝛼(𝑡
′′)]2

2
+ 𝐼𝑝)

𝑡

𝑡′

− ℏΩ𝑡 

(IV.2) 

Momentum derivative  
𝜕𝑆𝑞

𝜕𝑝
= 0: 

∫ 𝑑𝑡′′[𝑒𝐴𝛼(𝑡
′′)]

𝑡

𝑡′
= (𝑡 − 𝑡′)𝑝 

(IV.3) 

Ionization moment derivative  
𝜕𝑆𝑞

𝜕𝑡′
= 0: 

[𝑝 − 𝑒𝐴𝛼(𝑡
′)]2

2
= −𝐼𝑝 

(IV.4) 

Recombination moment derivative  
𝜕𝑆𝑞

𝜕𝑡
= 0: 

[𝑝 − 𝑒𝐴𝛼(𝑡)]
2

2
= ℏΩ − 𝐼𝑝 

(IV.5) 

Coherent parameter derivative – x quadrature:  

𝐴𝛼(𝑡) =
𝜖(1)

𝜔
(𝛼𝑒−𝑖𝜔𝑡 + 𝛼∗𝑒𝑖𝜔𝑡) =

2𝜖(1)

𝜔
[𝛼𝑥 cos(𝜔𝑡) + 𝛼𝑦 sin(𝜔𝑡)] 

(IV.6) 
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1

𝑖

𝜕𝑆𝑞

𝜕𝛼𝑥
= −4

(𝛼𝑥 − 𝛾𝑥)

3 + 𝑒−2𝑟

+
2𝑖𝜖(1)

𝜔
{
1

𝜔
𝑝 [sin(𝜔𝑡) − sin(𝜔𝑡′)]

−
𝜖(1)

𝜔
𝑒𝛼𝑥 {𝑡 − 𝑡

′ +
1

2𝜔
(sin(2𝜔𝑡) − sin(2𝜔𝑡′))}

+
𝜖(1)

𝜔
𝑒𝛼𝑦

1

2𝜔
[cos(2𝜔𝑡) − cos(2𝜔′𝑡′)]} = 0 

 

Coherent parameter derivative – y quadrature:  

𝐴𝛼(𝑡) =
𝜖(1)

𝜔
(𝛼𝑒−𝑖𝜔𝑡 + 𝛼∗𝑒𝑖𝜔𝑡) =

2𝜖(1)

𝜔
[𝛼𝑥 cos(𝜔𝑡) + 𝛼𝑦 sin(𝜔𝑡)] 

(IV.7) 

1

𝑖

𝜕�̃�

𝜕𝛼𝑦
= −4

(𝛼𝑦 − 𝛾𝑦)

3 + 𝑒2𝑟

+
2𝑖𝜖(1)

𝜔
{−

1

𝜔
𝑝[cos(𝜔𝑡) − cos(𝜔𝑡′)]

+
𝜖(1)

𝜔
𝑒𝛼𝑥

1

2𝜔
[cos(2𝜔𝑡) − cos(2𝜔𝑡′)]

−
𝜖(1)

𝜔
𝑒𝛼𝑦 {𝑡 − 𝑡

′ −
1

2𝜔
[sin(2𝜔𝑡) − sin(2𝜔𝑡′)]}} = 0 

 

Infinite volume of quantization 

Upon taking the limit of an infinite volume of quantization 𝑉 → ∞ the following limits apply: 

𝜖(1) → 0, 
ℏ𝜔

2𝜖0𝑉
 (3 + 𝑒2𝑟) → 2|𝐸𝑣𝑎𝑐|

2, 
ℏ𝜔

2𝜖0𝑉
 (3 + 𝑒−2𝑟) → 0. With these limits, the coupled 

algebraic equations take the form: 

 
∫ 𝑑𝑡′′[𝑒𝐴𝛼(𝑡

′′)]
𝑡

𝑡′
= (𝑡 − 𝑡′)𝑝 

 

 [𝑝 − 𝑒𝐴𝛼(𝑡
′)]2

2
= −𝐼𝑝 
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 [𝑝 − 𝑒𝐴𝛼(𝑡)]
2

2
= ℏΩ − 𝐼𝑝 

(IV.8)  

 

𝜖0𝑐(𝐸𝛼𝑦 − 𝐸𝛾𝑦) =
2𝑖

𝜔
 𝐼𝑣𝑎𝑐

{
 
 

 
 −

1

𝜔
𝑝 [cos(𝜔𝑡) − cos(𝜔𝑡′)]

−𝑒
𝐸𝛼𝑦
2𝜔

{𝑡 − 𝑡′ −
1

2𝜔
[sin(2𝜔𝑡) − sin(2𝜔𝑡′)]}

+𝑒
𝐸𝛼𝑥
4𝜔2

[cos(2𝜔𝑡) − cos(2𝜔𝑡′)]  }
 
 

 
 

 

 

 𝐸𝛼𝑥 = 𝐸𝛾𝑥  

 

I.V.B. Derivation directly from 𝑃(𝐸𝛼) distribution 

Here, we derive the coupled algebraic equations (IV.8) using the distribution  

𝑃 (𝐸𝛼𝑦) =
1

√2𝜋|𝐸𝑣𝑎𝑐|
𝑒
−
(𝐸𝛼𝑦−𝐸𝛾𝑦)

2

2|𝐸𝑣𝑎𝑐|2  

(IV.9) 

which corresponds to squeezing of the 𝑥 quadrature, so that the amplitude of electric field 

fluctuations in the anti-squeezed quadrature 𝐸𝛼𝑦 is 𝐸𝑣𝑎𝑐. The corrected action is given by 

𝑆 (𝒑, 𝑡′, 𝑡, 𝐸𝛼𝑦) = 𝑆𝛼(𝒑, 𝑡
′, 𝑡) + 𝑖log (𝑃 (𝐸𝛼𝑦)) 

𝑆 (𝒑, 𝑡′, 𝑡, 𝐸𝛼𝑦) = ∫ 𝑑𝑡′′ (
[𝒑 − 𝑒𝑨𝛼(𝑡

′′)]2

2
+ 𝐼𝑝)

𝑡

𝑡′
− 𝑖 

(𝐸𝛼𝑦 − 𝐸𝛾𝑦)
2

2|𝐸𝑣𝑎𝑐|2
 

(IV.10) 

Where the vector potential 𝐴𝛼(𝑡
′′) is 

𝐴𝛼(𝑡
′′) =

1

𝜔
(𝐸𝛼𝑦 sin(𝜔𝑡

′′) + 𝐸𝛾𝑥 cos(𝜔𝑡
′′)) 

(IV.11) 

The first three coupled equations are trivially identical to the semi-classical coupled equations 

because the correction to the semi-classical action is independent of 𝒑, 𝑡′, 𝑡. The fourth equation 

is given by: 

𝜕𝑆

𝜕𝐸𝛼𝑦
= 𝜕𝐸𝛼𝑦 ∫ 𝑑𝑡′′

(

 
 
[𝒑 − 𝑒

𝐸𝛼𝑦 sin(𝜔𝑡
′′) + 𝐸𝛾𝑥 cos(𝜔𝑡

′′)

𝜔 ]

2

2

)

 
 𝑡

𝑡′
− 𝑖 

𝐸𝛼𝑦 − 𝐸𝛾𝑦
|𝐸𝑣𝑎𝑐|2

= 0 
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Rearranging, it equates to: 

𝐸𝛼𝑦 = 𝐸𝛾𝑦 + 𝑖
|𝐸𝑣𝑎𝑐|

2

𝜔

{
  
 

  
 −

𝑝𝑒

𝜔
(cos(ωt) − 𝑐𝑜𝑠(𝜔𝑡′))

−𝑒2
𝐸𝛼𝑦
2𝜔

[𝑡 − 𝑡′ −
sin(2𝜔𝑡) − sin(2𝜔𝑡′)

2𝜔
]

+𝑒2
𝐸𝛾𝑥[cos(2𝜔𝑡) − cos(2𝜔𝑡

′)]

4𝜔2 }
  
 

  
 

 

This is precisely the fourth equation of (IV.8), as can be seen by substituting 𝐼𝑣𝑎𝑐 =
1

2
𝜖0𝑐|𝐸𝑣𝑎𝑐|

2. 

I.V.C. Yoctosecond time-delays induced by bare vacuum fluctuations. 

In Figure 4, we show that vacuum fluctuations at the frequency of the pump field induce 

yoctosecond time delays to the electronic trajectories in standard HHG experiments. This is 

found by solving the coupled algebraic equations (II.3)(II.7) for a squeezed coherent field |𝛼, 0⟩, 

i.e., by taking 𝑟 = 0. Notably, even for a coherent state, these equations are not identical to the 

semi-classical SFA equations, with deviations introduced by a nonzero value for 𝜖(1) = √
ℏ𝜔

2𝜖0𝑉
.  

For a coherent state driver, the electric field variance is given by Δ𝐸2 = 𝜖(1)
2
. That is, 𝜖(1) is the 

amplitude of electromagnetic vacuum fluctuations at the frequency of the driver. In free space, 

this amplitude depends on the focusing of the beam, and was measured44 to be of the order of 

1 − 100
𝑉

𝑐𝑚
 for focal spot radii in the range 100𝜇𝑚 − 1𝜇𝑚 . To obtain an upper bound for the 

time delays (i.e., the 𝑦𝑠 time delays presented in the main text), we plug in 𝜖(1) = 1500
𝑉

𝑐𝑚
 (3e-7 

a.u.). 

V. Derivation of the effective photon statistics forces 

In this section, we solve the coupled algebraic equations (IV.8) to show that within the qSFA, 

photon statistics are formally equivalent to a time-dependent force. That is, within the 

quantum-optical qSFA theory, the motion of the electron is formally governed by an 

effective semi-classical theory that includes an effective photon-statistics force, in addition 

to the classical electric field of the driving pulse. 
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According to equations (IV.8), the effective vector potential exerted by squeezed-coherent light 

on the electron is given by 𝐴𝛼(𝑡) =
1

𝜔
(𝐸𝛼𝑥 cos(𝜔𝑡) + 𝐸𝛼𝑦 sin(𝜔𝑡)). We note that in the absence 

of squeezing, 𝐴𝛼(𝑡) = 𝐴𝛾(𝑡) where 𝐴𝛾(𝑡) is the classical vector potential carried by the driving 

light. The last two equations of (IV.8) can be solved exactly, resulting in  

𝐴𝛼(𝑡) =
1

𝜔
(𝐸𝛾𝑥 cos(𝜔𝑡) + 𝐸𝛼𝑦 sin(𝜔𝑡)) 

𝐸𝛼𝑦

=
𝐸𝛾𝑦 +

𝑖
𝜔 𝐸𝑣𝑎𝑐

2 {−
1
𝜔 𝑝𝑒 

[cos(𝜔𝑡) − cos(𝜔𝑡′)] + 𝑒2
𝐸𝛾𝑥
4𝜔2

[cos(2𝜔𝑡) − cos(2𝜔𝑡′)]}

(1 + 𝑖𝑒2
𝐸𝑣𝑎𝑐2

2𝜔2
{𝑡 − 𝑡′ −

1
2𝜔
[sin(2𝜔𝑡) − sin(2𝜔𝑡′)]})

 

(V.1) 

𝐸𝛼𝑦 can be rearranged as 

𝐸𝛼𝑦 =
𝐸𝛾𝑦 +

𝑖𝑒
𝜔  𝐸𝑣𝑎𝑐

2 ∫ 𝑑𝑡′′ sin(𝜔𝑡′′) (𝑝 − 𝑒
𝐸𝛾𝑥
𝜔 cos(𝜔𝑡′′))

𝑡

𝑡′

1 + 𝑖𝑒2
𝐸𝑣𝑎𝑐2

2𝜔2
∫ 𝑑𝑡′′
𝑡

𝑡′
(1 − cos(2𝜔𝑡′′))

 

(V.2) 

 Taking 𝐸𝑣𝑎𝑐
2 2𝜔2⁄ ≪ 1 and neglecting high-order terms in 𝐸𝑣𝑎𝑐, we have  

 (V.3) 

𝐸𝛼𝑦 ≈ 𝐸𝛾𝑦 +
𝑖𝑒

𝜔
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′ sin(𝜔𝑡′′) (𝑝 − 𝑒

𝐸𝛾𝑥

𝜔
cos(𝜔𝑡′′))

𝑡

𝑡′
− 𝑖𝑒2

𝐸𝛾𝑦𝐸𝑣𝑎𝑐
2

2𝜔2
∫ 𝑑𝑡′′
𝑡

𝑡′
(1 −

cos(2𝜔𝑡′′))  

Using 𝑝 = 𝑣(𝑡) + 𝑒𝐴𝛼(𝑡) = 𝑣(𝑡) +
𝑒

𝜔
(𝐸𝛾𝑥 cos(𝜔𝑡) + 𝐸𝛼𝑦 sin(𝜔𝑡)) where 𝑣(𝑡) is the velocity 

of the electron at time 𝑡, we have 𝑝 − 𝑒
𝐸𝛾𝑥

𝜔
cos(𝜔𝑡′′) = 𝑣(𝑡) + 𝑒

1

𝜔
𝐸𝛼𝑦 sin(𝜔𝑡). Hence 

 (V.4) 

𝐸𝛼𝑦 − 𝐸𝛾𝑦 ≈ ∫ 𝑑𝑡′′ (
𝑖𝑒

𝜔
 𝐸𝑣𝑎𝑐
2 𝑣(𝑡′′) sin(𝜔𝑡′′) +

𝑖

𝜔2
𝑒2 𝐸𝑣𝑎𝑐

2 (𝐸𝛼𝑦 − 𝐸𝛾𝑦) sin
2(𝜔𝑡′′))

𝑡

𝑡′
 

Rearranging,  

 (V.5) 

𝐸𝛼𝑦 − 𝐸𝛾𝑦 ≈
∫ 𝑑𝑡′′

𝑖𝑒
𝜔  𝐸𝑣𝑎𝑐

2 𝑣(𝑡′′) sin(𝜔𝑡′′)
𝑡

𝑡′

(1 −
𝑖
𝜔2
 𝑒2𝐸𝑣𝑎𝑐2 ∫ 𝑑𝑡′′(sin2(𝜔𝑡′′))

𝑡

𝑡′
)
≈
𝑖𝑒

𝜔
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′𝑣(𝑡′′) sin(𝜔𝑡′′)

𝑡

𝑡′
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We plug this into the first equation of (IV.8), which describes the displacement of the electron as 

a function of time: 

 (V.6) 

∫ 𝑑𝑡′′
𝑒

𝜔
(𝐸𝛾𝑥 cos(𝜔𝑡

′′) + 𝐸𝛾𝑦 sin(𝜔𝑡
′′) +

𝑖𝑒

𝜔
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝑡′′′𝑣(𝑡′′′) sin(𝜔𝑡′′′)

𝑡

𝑡′
)

𝑡

𝑡′
=

(𝑡 − 𝑡′)𝑝   

Now, we make use of the formula  

 (V.7) 

∫ 𝑑𝜏1

𝑡

0

∫ 𝑑𝜏2

𝜏1

0

(𝑓(𝜏1)𝑔(𝜏2) + 𝑓(𝜏2)𝑔(𝜏1)) = (∫ 𝑑𝜏
𝑡

0

𝑓(𝜏))(∫ 𝑑𝜏
𝑡

0

𝑔(𝜏)) 

To write the equality: 

 (V.8) 

𝑖𝑒

𝜔2
 𝐸𝑣𝑎𝑐
2 (∫ 𝑑𝑡′′ sin(𝜔𝑡′′)

𝑡

𝑡′
)(∫ 𝑑𝑡′′′ 𝑣(𝑡′′′) sin(𝜔𝑡′′′)

𝑡

𝑡′
) = 

∫ 𝑑𝑡′′
𝑡

𝑡′

𝑖𝑒

𝜔2
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′′

𝑡′′

𝑡′
((𝑣(𝑡′′) + 𝑣(𝑡′′′)) sin(𝜔𝑡′′) sin(𝜔𝑡′′′)) 

Hence,  

 (V.9) 

∫ 𝑑𝑡′′𝑒 [𝐴𝛾(𝑡
′′) +

𝑖𝑒

𝜔2
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′′

𝑡′′

𝑡′
((𝑣(𝑡′′) + 𝑣(𝑡′′′)) sin(𝜔𝑡′′) sin(𝜔𝑡′′′))]

𝑡

𝑡′
= (𝑡 − 𝑡′)𝑝 

We now postulate the existence of an effective semi-classical action, 𝑆𝑒𝑓𝑓, which solves equation 

(V.9). 

 

𝑑𝑆𝑒𝑓𝑓

𝑑𝑝
= ∫ 𝑑𝑡′′  {𝑝

𝑡

𝑡′

− 𝑒 [𝐴𝛾(𝑡
′′) +

𝑖𝑒

𝜔2
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′′

𝑡′′

𝑡′
((𝑣(𝑡′′) + 𝑣(𝑡′′′)) sin(𝜔𝑡′′) sin(𝜔𝑡′′′))]} = 0 
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This is solved by the effective semi-classical action: 

𝑆𝑒𝑓𝑓(𝑝, 𝑡
′, 𝑡) = ∫ 𝑑𝑡′′  

[𝑝 − 𝑒𝐴𝛾(𝑡
′′) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝜏

𝑡′′

𝑡′
𝑣(𝜏) sin(𝜔𝜏)]

2

2

𝑡

𝑡′
 

(V.10) 

That is, the strong-field dynamics of the electron in the squeezed coherent field are formally 

equivalent to dynamics in an effective semi-classical theory, where the electron is subject to the 

classical vector potential 𝐴𝛾(𝑡
′′) and an effective photon statistics force  

𝐴𝑠𝑞(𝑡
′′) =

𝑖𝑒

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′)∫ 𝑑𝜏

𝑡′′

𝑡′
𝑣(𝜏) sin(𝜔𝜏) 

(V.11) 

Consistency of the effective photon statistics force with the complete qSFA theory 

Here, we derive the effective semi-classical coupled algebraic equations associated with the 

effective photon statistics force. We show that they precisely reproduce the coupled algebraic 

equations derived by the complete quantum-optical qSFA theory.  

p derivative 

Using the property 𝑣(𝜏) = 𝑝 − 𝑒𝐴𝛾(𝜏), 𝑣(𝑡
′′) = 𝑝 − 𝒆𝐴𝛾(𝑡

′′) we write: 

𝑑𝑆𝑒𝑓𝑓

𝑑𝑝

=
𝑑

𝑑𝑝
∫ 𝑑𝑡′′  

[𝑝 − 𝑒𝐴𝛾(𝑡
′′) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝜏

𝑡′′

𝑡′
(𝑝 − 𝑒𝐴𝛾(𝜏)) sin(𝜔𝜏)]

2

2

𝑡

𝑡′
 

 

(V.12) 

Explicitly, equates to (up to 2nd order in 𝐸𝑣𝑎𝑐): 

𝑑𝑆𝑒𝑓𝑓

𝑑𝑝
= ∫ 𝑑𝑡′′ (𝑝 − 𝑒𝐴𝛾(𝑡

′′) −
𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′)∫ 𝑑𝜏

𝑡′′

𝑡′
(𝑣(𝜏) + 𝑣(𝑡′′)) sin(𝜔𝜏)) 

𝑡

𝑡′
 

(V.13) 

This reproduces (V. 9), i.e., the 3rd equation of (IV.8).  

𝑡′ derivative 

𝑑𝑆𝑒𝑓𝑓

𝑑𝑡′
=
𝑑

𝑑𝑡′
∫ 𝑑𝑡′′  

[𝑝 − 𝑒𝐴𝛾(𝑡
′′) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝜏

𝑡′′

𝑡′
𝑣(𝜏) sin(𝜔𝜏)]

2

2

𝑡

𝑡′
= 

(V.14) 
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=
𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′ 𝑣(𝑡′′) sin(𝜔𝑡′′)𝑣(𝑡′) sin(𝜔𝑡′)

𝑡

𝑡′
−
[𝑝 − 𝐴𝛾(𝑡

′)]
2

2
 

This reproduces the 2nd equation of (IV.8), as can be seen by substituting (IV.5) into (IV.8): 

𝐸𝛼𝑦 − 𝐸𝛾𝑦 ≈
𝑖𝑒

𝜔
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′𝑣(𝑡′′) sin(𝜔𝑡′′)

𝑡

𝑡′
 

−
[𝑝 − 𝑒𝐴𝛼(𝑡

′)]2

2
= −

[𝑝 − 𝑒𝐴𝛾(𝑡
′) − sin(𝜔𝑡′)

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 ∫ 𝑑𝑡′′𝑣(𝑡′′) sin(𝜔𝑡′′)

𝑡

𝑡′
]
2

2

= −
[𝑝 − 𝑒𝐴𝛾(𝑡

′)]
2

2
+
𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 𝑣(𝑡′) sin(𝜔𝑡′)∫ 𝑑𝑡′′𝑣(𝑡′′) sin(𝜔𝑡′′)

𝑡

𝑡′
 

(V.15) 

𝑡 derivative 

𝑑𝑆

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝑑𝑡′′  

[𝑝 − 𝑒𝐴𝛾(𝑡
′′) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝜏

𝑡′′

𝑡0
𝑣(𝜏) sin(𝜔𝜏)]

2

2

𝑡

𝑡′

=
[𝑝 − 𝑒𝐴𝛾(𝑡) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡) ∫ 𝑑𝜏

𝑡

𝑡0
𝑣(𝜏) sin(𝜔𝜏)]

2

2
 

(V.16) 

This precisely equates the third equation in (IV.8): 

[𝑝 − 𝐴𝛼(𝑡)]
2

2
=
[𝑝 − 𝑒𝐴𝛾(𝑡) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡) ∫ 𝑑𝜏

𝑡

𝑡0
𝑣(𝜏) sin(𝜔𝜏)]

2

2
 

(V.17) 

 

VI. Newtonian trajectories in the effective photon statistics force 

In this section, we attribute physical meaning to the effective photon statistics force, using the 

effective semi-classical SFA dipole moment:  

𝑆𝑒𝑓𝑓(𝑝, 𝑡
′, 𝑡) = ∫ 𝑑𝑡′′  

[𝑝 − 𝑒𝐴𝛾(𝑡
′′) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝜏

𝑡′′

𝑡 ′
𝑣(𝜏) sin(𝜔𝜏)]

2

2

𝑡

𝑡′
 

𝑧𝑒𝑓𝑓(𝑡) =
𝑖

ℏ
∫𝑑3𝒑∫ 𝑑𝑡′𝐸𝛾(𝑡)𝑑𝑧 (𝑝 − 𝐴𝛾(𝑡

′)) 𝑑𝑧
∗ (𝑝 − 𝐴𝛾(𝑡)) ⋅ exp (−𝑖𝑆𝑒𝑓𝑓(𝑝, 𝑡, 𝑡

′))
𝑡

0

+ c. c. 

(VI.1) 
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𝑆eff(𝒑, 𝑡, 𝑡
′) = ∫ 𝑑𝑡′′

[𝑝 − 𝑒𝐴𝛾(𝑡
′′) − 𝑒

𝑖
𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝜏

𝑡′′

𝑡′
𝑣(𝜏) sin(𝜔𝜏)]

2

2
+ 𝐼𝑝

𝑡

𝑡′
 

(VI.2) 

Expanding the exponent: 

exp (−𝑖𝑆𝑒𝑓𝑓(𝑝, 𝑡, 𝑡
′))

≈ exp (−𝑖𝑆𝛾(𝑝, 𝑡, 𝑡
′))

× exp (−
𝐸𝑣𝑎𝑐
2 𝑒2

𝜔2
𝑣(𝑡′′) sin(𝜔𝑡′′)∫ 𝑑𝜏

𝑡′′

𝑡′
𝑣(𝜏) sin(𝜔𝜏)) 

(VI.3) 

𝑆𝑒𝑓𝑓(𝑝, 𝑡
′, 𝑡) = ∫ 𝑑𝑡′′  

[𝑝 − 𝑒𝐴𝛾(𝑡
′′) −

𝑖𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 sin(𝜔𝑡′′) ∫ 𝑑𝜏

𝑡′′

𝑡′
𝑣(𝜏) sin(𝜔𝜏)]

2

2

𝑡

𝑡′
 

 

 

exp (−𝑖𝑆𝑒𝑓𝑓(𝑝, 𝑡, 𝑡
′))

= exp(−𝑖∫ 𝑑𝑡′′  
[𝑝 − 𝑒𝐴𝛾(𝑡

′′)]
2

2
− 
𝑒2

𝜔2
 𝐸𝑣𝑎𝑐
2 𝑣(𝑡′′)sin(𝜔𝑡′′)∫ 𝑑𝜏

𝑡′′

𝑡 ′
𝑣(𝜏) sin(𝜔𝜏)

𝑡

𝑡′
) 

Therefore, the effective photon statistics force results in exponential decay/ growth of the dipole 

moment, with the rate of decay proportional to the velocity.  

VII. Enhancement of multi-photon processes 

Quantum states of light such as squeezed vacuum and stochastic light are known to enhance 

multiphoton processes, which compete with high harmonic generation. For example, stochastic 

and squeezed vacuum light enhance multiphoton ionization, which may result in bound state 

depletion3,45. Enhancement of multiphoton processes of order 𝑛 scales as the n’th order 

coherence 𝑔(𝑛)(0) of the driving light. Stochastic light enhances multiphoton ionization because 

its n’th order coherence is given by 𝑔(𝑛) = 𝑛!. Squeezed vacuum light enhances multiphoton 

ionization because it’s n’th order coherence is given by 𝑔(𝑛) = (2𝑛 − 1)‼.  

In this paper, we explore HHG driven by squeezed coherent light, in a regime where only minute 

bunching occurs and 𝑔(𝑛) ≈ 1, thus multi-photon processes are not enhanced. The n’th order 

coherence 𝑔(𝑛) of squeezed coherent light |𝛽, 𝑟𝑒𝑖𝜙⟩ is given by (reference 6, equation 3.27): 
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𝑔(𝑛)(𝜏 = 0) =
𝐺𝑛𝑛
𝐺11
𝑛  

𝐺𝑛𝑛 = (𝑛!)
2∑|𝐻𝑘 (

𝑖𝑊

√2𝑆
)|
2 |𝑆|𝑘𝑀𝑛−𝑘

2𝑘(𝑘!)2(𝑛 − 𝑘)!

𝑛

𝑘=0

 

𝑀 =
1

2
[(4|𝑆|2 + 1)1 2⁄ − 1] 

𝑆 = 𝑒𝑖𝜙 cosh(𝑟) sinh(𝑟) = 𝑒𝑖𝜙(sinh2(𝑟) + 𝑒−𝑟 sinh(𝑟)) ≈ 𝑒𝑖𝜙 sinh2(𝑟) 

𝑊 = 𝛽 

in which 𝐻𝑘(𝑥) are Hermite polynomials, and 𝑊, 𝑆,𝑀 are coefficients related to |𝛽, 𝑟⟩. In our 

paper, we operate in a regime where 𝐼𝑐𝑜ℎ ≫ 𝐼𝑣𝑎𝑐, i.e., the coherent component of the light is 

much brighter compared to the component originating from squeezing. In this limit |𝛽|2 =

|𝑊|2 ≫ 𝑀, 𝑆, the element 𝐺𝑛𝑛 becomes (ref7 , equation 4.1): 

𝐺𝑛𝑛 ≈ |𝑊|
2𝑛 +

𝑛(𝑛 − 1)

2
|𝑊|2𝑛−4(𝑆𝑊∗2 + 𝑆∗𝑊2) + 𝑛2|𝑊|2𝑛−2𝑀  

For the cases discussed in the paper,  

|𝑊|2 = 𝑁𝑐𝑜ℎ ≈ 10
14 

𝑆 < 1012 =
|𝑊|

100
 

𝑀 ≈ 𝑆 < 1012 =
|𝑊|

100
 

Therefore,  

𝐺𝑛𝑛 ≈ |𝑊|
2𝑛 (1 +

𝑛(𝑛 − 1)

2
|𝑊|−4(𝑆𝑊∗2 + 𝑆∗𝑊2) + 𝑛2|𝑊|−2𝑀 ) ≈ 

≈ |𝑊|2𝑛 (1 +
𝑛(𝑛 − 1)

2

|𝑊|−1

100
 +
𝑛2|𝑊|−1

100
 ) ≈ 

≈ |𝑊|2𝑛 (1 + 10−14 (
𝑛(𝑛 − 1)

2 × 100
+
𝑛2

100
) ) ≈ |𝑊|2𝑛 
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We have 𝐺𝑛𝑛 ≈ |𝑊|
2𝑛, and 𝑔(𝑛) =

𝐺𝑛𝑛

𝐺11
𝑛 =

|𝑊|2𝑛

(|𝑊|2)𝑛
= 1, i.e., no bunching occurs, and therefore 

enhancement of multiphoton ionization is negligible and the strong-field approximation is valid. 
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