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08010 Barcelona, Spain. 

 

*Corresponding author. Email: kaminer@technion.ac.il 

 

This PDF file includes: 

 

Supplementary Text 

Figures S1 to S3 

Captions for Movies S1 to S3 

 

Other Supporting Information for this manuscript include the following:  

 

Movies S1 to S3 

 

 

 

 

 

 

 

 

  



 

 

2 

 

Supplementary Text 

Theory of charge dynamics electron microscopy (CDEM) 

In this section, we introduce a theoretical description of charge-dynamics electron microscopy 

(CDEM). First, we present a theory of the interaction of swift electrons with arbitrary classical 

electromagnetic fields described by a general set of potentials (scalar and vector potentials). We 

show how CDEM may be described by the same theoretical apparatus which has been successfully 

applied to describe the interactions of swift electrons with strong optical fields, as used in photon-

induced near-field electron microscopy (PINEM).45–47,49 The framework discussed in this section 

generalizes prior treatments to cases in which the fields are described by both a vector and a scalar 

potential. Prior work has operated in a gauge in which the scalar potential is eliminated; this is 

always possible, but in many cases (especially in near-field optics), an approximate description in 

terms of a pure scalar potential (via Coulomb’s law) can prove convenient. Additionally, certain 

gauges necessarily include a scalar potential, such as the Lorenz gauge, for which a straightforward 

calculation connects the source terms and the potentials. We employ a general unspecific-gauge 

approach to derive a master equation for the electron wave function after interacting with the fields 

created by the studied charge dynamics in the specimen (e.g., such as an irradiated semiconductor 

producing THz near fields via the photo-Dember effect, as described in the main text for our 

experiment). 

We show how this master equation, taken in its classical limit, describes quite accurately the 

observed energy losses in the CDEM experiments presented in the main text. The classical limit 

of this theory is sufficient when the electron pulse duration is substantially shorter than a single 

field cycle, so the electron can be treated as a point particle, as is approximately the case in our 

experiment. Using the fact that the experiments are well-described by the classical limit of this 

theory, we then develop a second, complementary theory of CDEM which is purely classical 

(making no reference to electron wave functions). We shall refer to this second theory as the 

“classical theory of CDEM”. In the classical approach, the observed energy loss is modeled by 

calculating the work done on a classical point charge (the electron) by the electric force associated 

with the fields created by the charge dynamics.  

 

1. Review of quantum theory of swift electron interactions with classical EM fields 

In this section, we adopt a quantum-mechanical formalism to describe the interaction of the probe 

electron with an effective potential Π(𝐫, t) that contains both the vector and scalar potentials. This 

unified quantum theory can be understood as a generalization of the theory of PINEM46,47 to the 

case of a wide-bandwidth field,51 such as the THz field in our experiment. The unified theory also 

describes the regimes of so-called anomalous-PINEM.55 Importantly, all assumptions regarding 

the free electron used in previous works (e.g., PINEM) on swift-electron interactions with EM 

fields (e.g., electron paraxiality) are retained here, and are generally applicable in transmission 

electron microscopy setups.46,47 We assume a relativistic free-electron pulse with a narrow energy 

distribution centered around 𝑈0 = √𝑚2𝑐4 + ℏ2𝑐2𝑘0
2 and narrow momentum distribution centered 

around 𝒑0 = ℏ𝑘0�̂� (associated with an “unperturbed” rectilinear velocity 𝑣). Further assuming that 

the interaction energy with the electromagnetic field is far smaller than the electron energy 𝑈0 =
𝛾𝑚𝑐2 (norecoil approximation), we may formulate a simple Hamiltonian description of the particle 

in terms of the effective potential Π.  

 

 



 

 

3 

 

To do so, we start from the approximate Hamiltonian for an energetic relativistic particle in an 

external electromagnetic field:78 

𝐻𝑅 ≈ 𝑈0 +
𝑐2(−𝑖ℏ∇ + 𝑒𝑨)2 + 𝑚2𝑐4 − (𝑈0 + 𝑒Φ)2

2(𝑈0 + 𝑒Φ)

≈ 𝑈0 +
𝑐2(−𝑖ℏ∇ + 𝑒𝑨)2 + 𝑚2𝑐4 − (𝑈0 + 𝑒Φ)2

2𝛾𝑚𝑐2
, (S1)

 

where we have used 𝑒Φ ≪ 𝑈0. Expanding the squares and ignoring quadratic terms in Φ and 𝑨 

(as well as identity terms) we obtain 

𝐻𝑅 =
−ℏ2∇2 − 2𝑖𝑒ℏ𝑨 ⋅ ∇ + 𝑚2𝑐2 −

𝑈0
2

𝑐2 −
2𝑈0𝑒Φ

𝑐2

2𝛾𝑚
. (S2) 

Defining the electron wave function in terms of its envelope as 𝜓 = 𝜙𝑒𝑖𝑘0𝑧−𝑖𝑈0𝑡/ℏ, one finds 

𝑖ℏ𝜕𝑡𝜙 = 𝐻𝜙, (S3) 

with 𝐻 = −𝑖ℏ𝒗 ⋅ ∇ + 𝑒𝒗 ⋅ 𝑨 − 𝑒Φ ≡ −𝑖ℏ𝒗 ⋅ ∇ + Π, and where 

Π(𝒓, 𝑡) = 𝑒𝒗 ⋅ 𝑨 − 𝑒Φ. (S4) 

In deriving this result, we have neglected ∇ ⋅ 𝑨 (arising from the relation ∇ ⋅ 𝑨 𝑘0𝑨⁄ ≪ 1 ). Taking 

the electron wave function to be of the form 𝜓(𝑧, 𝑡) ≡ 𝜙(𝑧, 𝑡)𝑒𝑖𝑘0𝑧−𝑖𝑈0𝑡/ℏ, with 𝜙(𝑧, 𝑡) denoting 

the envelope wave function, and considering |𝑘0𝜙| ≫ |∇𝜙| = |𝜕𝑧𝜙| (paraxial approximation), the 

Schrödinger equation may simply be written as 

(𝜕𝑡 + 𝑣𝜕𝑧)𝜙(𝑧, 𝑡) =
1

𝑖ℏ
Π(𝑧, 𝑡)𝜙(𝑧, 𝑡). (S5) 

To find this expression, we have expanded the square root in powers of ∇𝜙 and retained only terms 

up to the first derivative. Making the standard change of variables 𝑧′ = 𝑧 − 𝑣𝑡, 𝑡′ = 𝑡, Eq. (S5) 

may be written as 

𝜕𝑡′𝜙 =
1

𝑖ℏ
Π(𝑧′ + 𝑣𝑡′, 𝑡′)𝜙, (S6) 

admitting the solution 𝜙(𝑧′, 𝑡′) = 𝜙0(𝑧′) exp [−
𝑖

ℏ
∫ 𝑑𝑠 Π(𝑧′ + 𝑣𝑠

𝑡′

−∞
, 𝑠)]. Expressed in terms of 

𝑧, 𝑡, this solution can be recast into 

𝜙(𝑧, 𝑡) = 𝜙0(𝑧 − 𝑣𝑡) exp [−
𝑖

ℏ
∫ 𝑑𝑠 Π(𝑧 + 𝑣𝑠 − 𝑣𝑡, 𝑠)

𝑡

−∞

] . (S7) 

It is important to note that this expression is consistent with previous treatments for which the 

scalar potential vanishes and then the expression above reduces to (using Eq. (S4) for Π) 

𝜙(𝑧, 𝑡) = 𝜙0(𝑧 − 𝑣𝑡) exp [−
𝑖𝑒𝑣

ℏ
∫ 𝑑𝑠 𝐴z(𝑧 + 𝑣𝑠 − 𝑣𝑡, 𝑠)

𝑡

−∞

] . (S8) 

This expression is identical to that in references 43 and 46. In the CDEM experiment described in 

the main text, 𝐴z is equal to zero (see the following section on the hydrodynamic model), and thus 

we can replace Π by the scalar potential −𝑒Φ (using Eq. (S4)). 

Simulation of the measured EELS data (i.e., electron spectrum versus time-delay) is carried out by 

first evaluating the Fourier transform of the electron coherent wave function with respect to time 

at the detector plane, where a time-delay variable ∆𝑡 is introduced in the incident electron wave 

function 𝜙0(𝑧 − 𝑣 ⋅ (𝑡 + ∆𝑡)), representing the varying pump-probe time-delay in our experiment. 

The squared modulus of this wave function is then convoluted in energy-shift (∆ℰ) and time-delay 

space with an incoherent broadening function – a two-dimensional chirped Gaussian of the form 
exp(−𝑎∆𝑡2 − 2𝑏∆𝑡∆ℰ − 𝑐∆ℰ2). The chirp 𝑏 is added here to accommodate for the electron pulse 
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dispersion, resulting from the electron emission process and free-space propagation inside the 

TEM column. The chirp parameter can be obtained experimentally, through fitting the above 

chirped Gaussian to one of the energy side-bands obtained in a PINEM-type experiment.35 

 

2. Classical limit of the general formalism 

Here, we work out a classical limit for the electron wave function after interaction with an arbitrary 

field, starting from the quantum-mechanical formalism reviewed above and assuming that the 

fields vary negligibly over the duration of the electron pulse. In this section, we choose a gauge 

with no scalar potential, allowing us to use Eq. (S8). 

The classical limit is associated with the fact that, in the present work, the electron wavepacket 

duration is shorter than the THz field cycle. In this situation, the electron essentially behaves as a 

classical point charge. It is then pertinent to Taylor-expand the slowly varying vector potential 

𝐴𝑧(𝑧 − 𝑣𝑡 + 𝑧′, 𝑡′) around small values of 𝑧 − 𝑣𝑡, assuming the centroid of the electron 

wavepacket to follow the trajectory 𝑧 = 𝑣𝑡. Thus, the argument of the exponential in Eq. (S8) can 

be expressed as (for the post-interaction electron at 𝑡 → ∞): 

−
𝑖𝑒

ℏ
∫ 𝑣 𝑑𝑡′(𝐴z(𝑣𝑡′, 𝑡′) + 𝜕𝑧′𝐴z(𝑧′, 𝑡′)|𝑧′=𝑣𝑡′(𝑧 − 𝑣𝑡) + 𝑂((𝑧 − 𝑣𝑡)2)).

∞

−∞

(S9) 

The term independent of 𝑧 − 𝑣𝑡 in this expansion contributes an overall phase φ =

−(𝑒𝑣/ℏ) ∫ 𝑑𝑡′ 𝐴𝑧(𝑣𝑡′, 𝑡′)
∞

−∞
 that does not affect the transmitted electron spectrum (i.e., its energy 

distribution). Using the relation 𝜕𝑡𝐴(𝑣𝑡, 𝑡) = 𝑣𝜕𝑧′𝐴(𝑧′, 𝑡′)|𝑧′=𝑣𝑡′; 𝑡′=𝑡 + 𝜕𝑡′𝐴(𝑧′, 𝑡′)|𝑧′=𝑣𝑡′; 𝑡′=𝑡, 

the term linear in 𝑧 − 𝑣𝑡 can be expressed as 𝑖 ℏ⁄ ∫  𝑣 𝑑𝑡′ (−𝑒𝐸𝑧(𝑣𝑡′, 𝑡′)) ⋅ (𝑧/𝑣 − 𝑡)
∞

−∞
. Here, we 

have used 𝐸 = −𝜕𝑡𝐴 and noted that, for a finite-duration field, the boundary term associated with 

the integral of 𝜕𝑡′𝐴 vanishes. The integral over 𝑡′ simply represents the work done on the charge 

by the electric field, assuming the trajectory 𝑧 = 𝑣𝑡, as mentioned above. To see this, we recall 

that the work done by a conservative force 𝑭(𝒓, 𝑡) on a particle moving along a trajectory 𝒓(𝑡) is 

simply given by Δℰ = ∫ 𝑑𝑡 𝑭(𝒓(𝑡), 𝑡) ⋅ 𝒗(𝑡). Therefore, the envelope wave function of the post-

interaction electron can be written in the form 

𝜙(𝑧, 𝑡) = 𝜙0(𝑧, 𝑡)𝑒𝑖𝜑exp[𝑖(Δℰ ℏ⁄ )(𝑧 𝑣⁄ − 𝑡)]. (S10) 

In summary, the wave function in Eq. (S10) is the incident one multiplied by an irrelevant phase 

factor 𝑒𝑖𝜑 as well as by a plane wave exp[𝑖(Δℰ ℏ⁄ )(𝑧 𝑣⁄ − 𝑡)] representing a rigid energy shift by 

Δℰ (and a corresponding change in momentum by Δℰ 𝑣⁄  within the nonrecoil approximation). 

Corrections of higher-order terms in the aforementioned Taylor expansion may become relevant 

for electron wavepacket durations similar to or larger than the field cycle. 

 

3. Fully classical description of energy loss of swift electrons 

Given that the electron energy spectrum observed in CDEM can be understood using the classical 

work done by the fields on a point charge, it is of interest to develop a conceptually simpler and 

purely classical theory of CDEM. The classical theory amounts to (1) calculating the EM fields 

that act on the impinging electrons (this step is shared with the quantum theory), (2) calculating 

the classical work done on the electron, and (3) averaging over the initial electron distribution to 

get the statistics of energy loss that is experimentally probed. For the latter, the distribution refers 

to the electron pulse duration, which determines a variance in the electron arrival time, as well as 

the electron energy width, which broadens the measured energy spectrum. 
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In order to evaluate the electron energy shift in the classical limit, one must first find the electric 

and magnetic fields resulting from the above potentials: 

𝑬 = −∇Φ −
𝜕𝑨

𝜕𝑡
,      𝑩 = ∇ × 𝐀. (S11) 

We next calculate the Lorentz force generated by the fields: 

𝑭 = −𝑒(𝑬 + 𝑣 × 𝐁). (S12) 

Defining the electron trajectory along z as 

𝑠(𝑡) = 𝑧0 + 𝑣(𝑡 − Δ𝑡), (S13) 

the mean electron energy shift is then given by: 

Δℰ(Δ𝑡) = ∫ 𝐹 ⋅ 𝑣𝑑𝑡 = ∫ 𝐹𝑧𝑑𝑠
𝑠f

𝑠i

𝑡f

𝑡i

, (𝑆14) 

where in the rightmost expression, the paraxiality assumption has been applied, implying that the 

electron velocity is directed exclusively along 𝑧. Moreover, under the quasi-static approximation, 

the magnetic field term in the Lorentz force can be neglected. For instance, in our experiment, this 

approximation is justified because the electron distance from the crystal is considerably smaller 

than the THz wavelength (𝑥electron ≅ 10 μm ≪  𝜆THz ≅ 600 μm). Therefore, we are left with 

𝐹𝑧 = −𝑒𝐸𝑧 ,      𝐸𝑧 = −
𝜕Φ

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑡
. (S15) 

In the final step of the calculation, the mean electron energy shift Δℰ(Δ𝑡) is represented in energy-

shift and time-delay space using a sum of delta functions: 

Δℰ(Δ𝑡, ℰ) = ∑ 𝛿(Δ𝑡 − Δ𝑡𝑖, ℰ − Δℰ(Δ𝑡𝑖)).

Δ𝑡𝑖

(S16)  

This expression is then convoluted with a kernel in two-dimensional energy-shift and time-delay 

space, in a similar manner to the aforementioned quantum theory, thus reproducing the EELS 

spectra observed in the experiment. 

 

Comparison of CDEM to other regimes of electron-field interactions 

In general, there are three major regimes of interaction that prove to be important when considering 

free-electron interactions with classical external electromagnetic fields. These regimes are 

classified according to the duration of the field cycle 𝜏EM relative to the electron pulse duration 

and the electron-field interaction duration 𝜏e ≲ 𝜏int (𝜏int appears in the main text as the ratio of 

the interaction length to the electron velocity, 𝐿/𝑣):  

[1] 𝜏EM ≪ 𝜏e: This regime occurs in the extreme case of optical and higher frequency fields (field 

cycle 𝜏EM~0.1-10 fs and even below), where the field cycle duration is much shorter than the 

electron pulse duration (e.g., 𝜏e~350 fs in our setup). The difference in timescales causes each 

electron to experience many field cycles. The resulting electron energy spectrum is then similar to 

photon-induced near-field electron microscopy (PINEM),45–52 which includes multiple ℏω-spaced 

energy peaks, each of them with a probability corresponding to the emission or absorption of a 

given number of photon quanta by the electron. Notably, this result can only be accommodated by 

a quantum mechanical treatment of the free-electron wave function. 

[2] 𝜏e, 𝜏int ≪ 𝜏EM: In the opposite extreme, the field cycle is much longer than both the electron 

pulse duration and the time taken by that electron to traverse the region of interaction. 

Consequently, each electron experiences a time-independent field and, hence, undergoes no energy 

shift (since such fields are conservative). This field can however cause the electron to undergo 

elastic scattering, changing the electron transverse momentum, as in deflectometry 
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measurements,27–29 which can be treated classically. This regime also encompasses electron 

holography53 and Lorentz microscopy,54 where only the electron phase (rather than its amplitude 

or energy) is altered by the (effectively DC) fields.  

[3] Describing all the intermediate regimes requires a general theory as explained above. One such 

regime is when the field cycle is longer than the electron pulse duration, but shorter than the 

interaction timescale. This is the regime in which CDEM occurs. For example, consider a field 

cycle of a few ps (i.e., in the THz region), which is longer than the electron pulse duration, but 

comparable or shorter than the time it takes the electron to traverse the region of interaction. The 

electron can be considered as a point particle, but experiences a time-varying field during its 

interaction (thus, non-conservative fields). Consequently, the overall acceleration and deceleration 

experienced by the electron does not average to zero, and the resulting electron spectrum can 

include net gain or loss of energy (i.e., it is strongly asymmetric). This is in contrast to the two 

other regimes, in which the energy shift averages to zero and the resulting electron energy spectrum 

is symmetric. 

 

Hydrodynamic model of the photo-Dember effect 

This section provides a summary of the hydrodynamic model of the photo-Dember effect observed 

in our experiment. Simply stated, this model takes us from the pump laser intensity through the 

spatiotemporal current density distribution inside the InAs crystal and finally to the electric 

potential outside the crystal. 

The mobility difference between photo-excited electrons and holes in InAs, together with the 

boundary condition imposed by the sample edges, lead to the rapid formation of a macroscopic 

(micron scale) dipole inside the crystal upon laser excitation. While the lower-mobility holes are 

bound to the surface, higher-mobility electrons are free to travel under the influence of drift and 

diffusion. This effect, known as the photo-Dember effect,42 involves the acceleration of charge 

carriers on a picosecond timescale and is therefore commonly used as a source of single-cycle THz 

radiation. 

Below we summarize the experimental considerations: 

1. We have a p-type InAs bulk sample (dopant concentration of 1017 cm-3). 

2. An 800 nm, 50 fs FWHM laser pulse with a repetition rate of 1 MHz impinges the sample 

face along the x coordinate – perpendicular to the surface. 

3. The laser pulse duration is negligible compared to the other time constants of the system. 

4. Immediately after the action of the laser pulse, we have the following density of photo-

excited pairs in the semiconductor: 

a. In the normal direction x, an exponential profile 𝑛(𝑥) = 𝑛exc𝑒−𝛼𝑥, where 𝑛exc is 

the number of excited pairs on the surface and α = 7 μm−1 is the absorption 

coefficient.  

b. In the transverse direction (the yz plane), a 2D Gaussian profile that follows the 

laser spot (40 μm FWHM). 

5. Due to the sharp decay of the distribution in the normal direction x relative to the much 

smoother distribution in the transverse direction yz, the following approximations can be 

safely adopted: 

a. The charge dynamics inside the sample can be assumed to be one-dimensional 

(current density 𝑗𝑥 along x). 

b. For the purpose of solving the charge dynamics, the geometry can be considered as 

a semi-infinite sample in the x axis, and infinite in the y and z axes. 
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The dynamics of the electron-hole distribution in the system can be described using a 

hydrodynamic model of the photo-Dember effect, as derived by Reklaitis.44 Using this model, the 

transient current density inside the sample was shown to be given by: 

𝑗𝑥(𝒓, 𝑡) = 𝑒𝑛exc𝐼(𝒔)𝑣𝑡
2𝛼𝑒−𝛼𝑥𝑒−

𝛾𝑡
2

sin 𝜔𝑡

𝜔
,  

𝜔 = √𝜔0
2 − 𝜔1

2(1 − 𝑒−𝛼𝑥), (S17)  

𝜔0 = √
𝑒2

휀
(

𝑛exc𝐼(𝒔) 

𝑚∗
+

𝑛eq

𝑚eq
) −

𝛾2

4
, 𝜔1 = √

𝑒2

휀

𝑛exc𝐼(𝒔) 

𝑚∗
. 

Here, 𝑣t
2 = 𝑣te

2 − 𝑣th
2 ≅ 𝑣te

2  is the difference between the average squared velocities of electrons 

and holes immediately after photoexcitation, γ is the momentum relaxation rate associated with 

collisions inside the sample, 𝑛eq is the concentration of equilibrium charges in the semiconductor 

(in our case, 𝑛eq is the doping concentration). 𝑚eq is the effective mass of equilibrium charges 

(here, 𝑚eq = 𝑚h), and 𝑚∗ =
�̃�e𝑚ℎ

�̃�e+𝑚ℎ
 with �̃�e and 𝑚h denoting the effective masses of electrons 

and holes, respectively, and the tilde indicates that the electron nonparabolicity has been accounted 

for (see table S1 below). Also, 𝐼(𝒔) is the transverse laser-intensity profile (a dimensionless 

function) in the yz plane, while 𝒔 is a transverse yz-plane coordinate, 𝒔 = 𝑦�̂� + 𝑧�̂�. 

Table S1 summarizes the various parameters that enter our model. 

Table S1. Parameters used in the hydrodynamic model of the photo-Dember effect 

Parameter 

symbol 
Parameter name value 

𝛼 Absorption coefficient 7 μm−1 

휀 Dielectric permittivity 12.3휀0 

𝛾 Momentum relaxation rate 3.3 ⋅ 1012 s−1 

𝑚ℎ Hole effective mass 0.6𝑚0 

𝑚e 
Electron effective mass 

(low energy) 
0.022𝑚0 

𝜆, ℎ𝜐 
Excitation laser wavelength 

and energy 
800 nm, 1.55 eV 

𝐸𝑔 Band gap energy 0.354 eV 

𝛼Γ 
Conduction band 

nonparabolicity 
2.2 eV−1 

𝑛eq 
Density of equilibrium 

carriers (holes) 
1017 cm−3 

𝑣te
2  

Electron average squared 

velocity 

2휀𝑒

3𝑚𝑒

1 + 𝛼Γ휀𝑒

1 + 4𝛼Γ휀𝑒(1 + 𝛼Γ휀𝑒)
= (7.661 ⋅ 105  

m

s
)

2

 

휀𝑒 
Energy of photoexcited 

electrons 

2(ℎ𝜈 − 𝐸𝑔)𝑚ℎ

𝑚𝑒 + 𝑚ℎ + [(𝑚𝑒 + 𝑚ℎ)2 + 4𝛼Γ(ℎ𝜈 − 𝐸𝑔)𝑚𝑒𝑚ℎ]
1 2⁄

= 1.065 eV 

�̃�e Photoelectron effective mass 𝑚𝑒

3[1 + 4𝛼Γ휀𝑒(1 + 𝛼Γ휀𝑒)]3 2⁄

3 + 8𝛼Γ휀𝑒(1 + 𝛼Γ휀𝑒)
=  0.185𝑚0 

 

We now evaluate the resulting potential, and note that only 𝐸𝑧 can change the electron energy (due 

to the paraxial approximation, as discussed in the CDEM theory above).  
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Adopting the Lorenz gauge, the following formulae can be used to find the potentials: 

𝑨(𝒓, 𝑡) =
𝜇0

4𝜋
∫

𝒋(𝒓′, 𝑡𝑟)

|𝒓 − 𝒓′|
𝑑3𝒓′,

Φ(𝒓, 𝑡) =
1

4𝜋휀0
∫

𝜌(𝒓′, 𝑡𝑟)

|𝒓 − 𝒓′|
𝑑3𝒓′ ,

(S18) 

where we use the retarded time defined by 

𝑡𝑟 = 𝑡 −
√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2

𝑐
. (S19) 

According to these expressions, we have 𝐴𝑧 = 0 since 𝑗𝑧 = 0, and thus, 

𝐸𝑧 = −
𝜕Φ

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑡
= −

𝜕Φ

𝜕𝑧
. (S20) 

Let us now find the charge density 𝜌. Neglecting band bending near the crystal edges, before the 

interaction we have a constant and uniform charge density 𝜌0 = 𝑒𝑛eq across the crystal. To find 

the charge density after the interaction, we invoke the continuity equation 
𝜕𝜌(𝒓, 𝑡)

𝜕𝑡
+

𝜕𝑗𝑥(𝒓, 𝑡)

𝜕𝑥
= 0, (S21) 

and hence, 

𝜌(𝒓, 𝑡) = 𝜌0 − ∫
𝜕𝑗𝑥(𝒓, 𝜏)

𝜕𝑥

𝑡

0

𝑑𝜏. (S22) 

We can neglect the constant part 𝜌0 because it does not create any energy gain or loss. Also, we 

should consider the boundary condition 𝑗𝑥(𝑥 < 0, 𝑦, 𝑧, 𝑡) = 0. Therefore, we have a surface charge 

density 𝜎 on the boundary given by 

𝜎(𝑦, 𝑧, 𝑡) = − ∫ 𝑗𝑥(𝑥 = 0, 𝑦, 𝑧, 𝜏)
𝑡

0

𝑑𝜏. (S23) 

Now, we can find the scalar potential: 

Φ(𝐫, t) =
1

4𝜋휀0
(∫

− ∫
𝜕𝑗𝑥(𝒓′, 𝜏)

𝜕𝑥′
𝑡

0
𝑑𝜏

|𝒓 − 𝒓′|
𝑑3𝒓′ + ∫

− ∫ 𝑗𝑥(𝑥′ = 0, 𝑦′, 𝑧′, 𝜏)
𝑡

0

|𝒓 − 𝒔′|
𝑑𝒔′) , (S24) 

Φ(𝒓, 𝑡) =
−1

4𝜋휀0
(∫

∫
𝜕𝑗𝑥(𝒓′, 𝜏)

𝜕𝑥′
𝑡

0
𝑑𝜏 𝑑𝑥′𝑑𝑦′𝑑𝑧′

√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2

+ ∫
∫ 𝑗𝑥(𝑥′ = 0, 𝑦′, 𝑧′, 𝜏)

𝑡

0
𝑑𝑦′𝑑𝑧′

√(𝑥 − 0)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2
). 

Integrating by parts, we obtain 

Φ(𝒓, 𝑡) =
1

4𝜋휀0
(∫ 𝑑𝑦′𝑑𝑧′ ∫ 𝑑𝑥′

+∞

0

∫ 𝑗𝑥(𝒓′, 𝜏)
𝑡

0
𝑑𝜏 ⋅ (𝑥′ − 𝑥)

((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2)3/2
) , (S25) 

where 𝑗𝑥 is taken from the hydrodynamic model of the photo-Dember effect (Eq. (S17)): 

∫ 𝑗𝑥(𝒓′, 𝜏)
𝑡

0

𝑑𝜏 = −
𝑒𝑛exc𝐼(𝒔)𝑣𝑡

2𝛼𝑒−𝛼𝑥′

𝜔(𝛾2 + 4𝜔2)
(4𝜔 cos 𝜔𝑡 + 2𝛾 sin 𝜔𝑡)𝑒−

𝛾𝑡
2 . (S26) 
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Through Eqs. (S4) and (S7), the calculated scalar potential is then used to evaluate the evolution 

of the electron wave function following the interaction with the field, and finally obtain the 

resulting electron spectrum. 

 

Complete model for the electron-field interaction, also considering the triangular sample geometry 

This section describes how we use the CDEM theory as part of an end-to-end model of the 

electron-field interaction, considering the triangular sample geometry used in the experiment. We 

rely on the hydrodynamic model from the previous section, which provides the dynamics of the 

charge density 𝜌(𝒓, 𝑡) inside the crystal. This density can be evaluated using a semi-infinite sample 

geometry, despite the non-trivial boundary conditions imposed by the triangular shape of the actual 

specimen, because the charge dynamics is confined near the area of laser excitation.  

In a semi-infinite sample (ROI 2 in Figure S1), we employ a fully analytical approach, as described 

in the previous section. If, however, one wishes to analyze the results shown in Figure 2 of the 

main text, the full sample geometry must be considered. We go beyond the charge distribution and 

analyze the created THz field and the electron-field interaction, which depend on the bulk charge 

distribution in a way that is sensitive to the boundary conditions. 

 

  

Figure S1. The different sample geometries considered in our experiment. We show a lateral plane (xy) illustration 

of such sample geometries. The green rectangles mark the two regions of interest (ROIs), along with the respective 

position of the incident pump laser (black arrow). Each ROI defines a region in the xy plane for which we calculate 

the field given a certain laser excitation. ROI 1 matches Figure 2 of the main text, while ROI 2 matches Figure S2. 

 

In the data shown in Figures 2A and 2B, there is some illumination of the triangular corner region. 

Unfortunately, considering the contribution of charge-carrier accumulation at the tip is a rather 

complicated task and was therefore left aside for the current work. Of course, in the simulations 

shown in Figures 2B and 3, the charge carriers and THz field dynamics were simulated taking the 

triangular sample boundary conditions into account. 

To model the THz pulse propagation in a triangular sample (ROI 1 in Figure S1), as is the case in 

Figure 2 of the main text, we employ a numerical approach. For this purpose, we use the 

Electrostatics module provided in COMSOL Multiphysics, which solves the Poisson equation both 

inside and outside the sample, incorporating the bulk 𝜌(𝒓, 𝑡) and surface 𝜎(𝑦, 𝑧, 𝑡) charge 

densities, as well as the current density 𝑗𝑥(𝒓, 𝑡), given in the previous section (Eqs. (S15), (S20), 

and (S21)). 

The charge distribution 𝜌(𝒓, 𝑡) is shown in the insets of Figures 2B and 3 of the main text. The 

reconstruction of the ultrafast charge dynamics is done by fitting this theory to the experimental 

ROI 2

ROI 1

InAs

Laser Laser
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data. The theory-experiment fit applied in the reconstruction compares the entire electron spectrum 

collected at each xy point. However, since the experimental information is five-dimensional, 

Figure 2 of the main text presents only the mean electron energy shifts (for a pump pulse energy 

of 10 nJ). 

The reconstruction of the charge dynamics can be improved by several orders of magnitude in 

different dimensions. For example, shorter electron pulse durations (currently ~350 fs) could 

provide higher time resolution. Similarly, using narrower electron energy width (currently ~1.1 

eV) could improve the sensitivity of CDEM to enable capturing features associated with lower 

charge densities. Working with a smaller electron probe (currently 1 μm) would improve the 

spatial resolution, only limited by the microscope magnification that can reach sub-nanometer spot 

sizes. CDEM with higher spatial resolution can be accomplished already with the existing setup at 

the expense of a reduced field of view. 

 

General principles for the sensitivity of CDEM: guidelines for applications in other systems 

In this section, we provide estimates for the feasibility of the CDEM approach beyond the current 

work, namely, what other effects can be observed via CDEM, and what is the expected sensitivity. 

We consider a time-harmonic line current density element 𝑗𝑥(𝒓, 𝑡) situated in the lateral xy plane: 

𝑗𝑥 = 𝐼0(θ(x) − θ(x − d)) 𝛿(𝑦)𝛿(𝑧) cos 𝜔𝑡 . (S27) 

The probe-electron passes along the z axis, near this element or through it, interacting with the 

emitted near field and undergoing an energy shift as a result. To analyze the sensitivity of the 

CDEM technique, we need to find the minimum current density values for which the map of 

electron energy shifts has a sufficiently large contrast to provide a signal (this depends on the 

resolution of the electron (energy) spectrometer and the electron energy width). We note that the 

mentioned current element can be regarded as a prototypical building block for arbitrarily more 

complex charge distributions (in particular, an arbitrary current density could be synthesized by 

superposing these line sources), and hence, the setup considered here, beyond being reasonably 

representative, is also readily extendable to more complex current distributions. 

The scalar potential created by the current density, according to Eq. (S24), is given by 

Φ(𝐫, t) =
1

4𝜋휀0
∫

− ∫
𝜕𝑗𝑥(𝒓′, 𝜏)

𝜕𝑥′
𝑡

0
𝑑𝜏

|𝒓 − 𝒓′|
𝑑3𝒓′ . (S28) 

Pluging Eq. (S27) in, we obtain 

∫
𝜕𝑗𝑥(𝒓′, 𝜏)

𝜕𝑥′

𝑡

0

𝑑𝜏 = 𝐼0(δ(𝑥′) − δ(𝑥′ − d)) 𝛿(𝑦′)𝛿(𝑧′)
sin 𝜔𝑡

𝜔
, (S29) 

Φ(𝐫, t) =
𝐼0

4𝜋휀0

sin 𝜔𝑡

𝜔
∫

−(δ(𝑥′) − δ(𝑥′ − d)) 𝛿(𝑦′)𝛿(𝑧′)

((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2)1 2⁄
𝑑3𝒓′

= −
𝐼0

4𝜋휀0

sin 𝜔𝑡

𝜔
(

1

(𝑥2 + y2 + z2)1 2⁄
−

1

((𝑥 − 𝑑)2 + y2 + z2)1 2⁄
) . (S30)

 

The electric field according to Eq. (S20) reads 

𝐸𝑧 =
3𝐼0

4𝜋휀0

sin 𝜔𝑡

𝜔
𝑧 (

1

(𝑥2 + y2 + z2)3 2⁄
−

1

((𝑥 − 𝑑)2 + y2 + z2)3 2⁄
) . (S31) 

We can assume that the electron trajectory is a straight line along 𝑧 such that  𝑧 = 𝑣 ⋅ (𝑡 − ∆𝑡), 

where ∆𝑡 is the time delay. Without loss of generality, we assume that the electron trajectory 

crosses the 𝑧 = 0 plane at 𝑥 = −𝑥0, 𝑦 = 0.  
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The energy shift of the electron can be quantified as 

Δℰ(∆𝑡) = 𝑚𝑐2Δ𝛾 =
𝑝𝑧

𝑚𝛾
 Δ𝑝𝑧 = 𝑒𝑣 ∫ 𝐸𝑧(−𝑥0, 0, 𝑧(𝑡, ∆𝑡), 𝑡)𝑑𝑡

+∞

−∞

, (S32) 

with the integral taken along the electron trajectory. 

Pluging the electric field (Eq. (S31)) in Eq. (S32), and evaluating the integral, we finally obtain 

Δℰ(Δ𝑡) =
3𝑒𝐼0

2𝜋휀0𝑣
cos 𝜔Δ𝑡 (𝐾0 (

𝜔𝑥0

𝑣
) − 𝐾0 (

𝜔(𝑥0 + 𝑑)

𝑣
)) , (S33) 

where 𝐾0 is the zeroth order modified Bessel function of the second kind. The largest energy shift 

is found for a time delay Δ𝑡 = 0. Furthermore, for the relevant THz frequencies, the dimensionless 

part of Eq. (S33) is of the order of unity: 

𝐾0 (
𝜔𝑥0

𝑣
) − 𝐾0 (

𝜔(𝑥0 + 𝑑)

𝑣
) ≈ 2.4, 

calculated for 𝜔 = 1012 Hz, 𝑥0 = 100 nm, 𝑑 = 1 𝜇m, and 𝑣 = 108 m/s. Thus, we can estimate 

the magnitude of the effect as 

Δℰ~
3𝑒𝐼0

2𝜋휀0𝑣
. (S34) 

Let us argue why Eq. (S34) provides a correct estimate for the photo-Dember effect discussed in 

the main text. From the charge density reconstruction, we have the minimum observable current 

density 𝑗 ≅ 108 A/m2, obtained for a pump laser pulse energy of 0.05 nJ and a laser spot area of 

about 10−10 m2, resulting in a total current of 𝐼0 ≅ 10−2 A. According to Eq. (S34), such a current 

gives a maximal energy shift of the order of 0.1eV, which is in good correspondence with the 

experimental results. 

Consequently, we can now consider other systems for which the ultrafast nanoscale charge 

dynamics is of interest. We can use Eq. (S34) to estimate the relevance of CDEM for any system 

with charge dynamics possessing nanometer-picosecond spatiotemporal features. The most critical 

parameter for estimating the relevance of CDEM is the effective current 𝐼0 that describes the 

charge dynamics. On the microscopic level, 𝐼0 can be related to the number of charge carriers 

participating in the process. If we consider the motion of a single electron, with changes on the 1 

ps timescale, the relevant current is 𝐼0 = 1.6 ⋅ 10−7 A. Substituting in Eq. (S34), this results in an 

energy shift of 1.4 ⋅ 10−5 eV (for an electron probe with a kinetic energy of 200 keV as in our 

experiment). Consequently, an electron spectrometer with such energy resolution would make it 

possible for CDEM to probe the dynamics of a single electron. Any phenomenon of charge 

dynamics that involves a larger number of electrons would increase the signal in proportion to the 

number of electrons. In the current work, the signal is created by the motion of ~104-105 charge 

carriers. State-of-the-art electron spectrometers reach an energy resolution near 1 meV43 and could 

thus reduce the required number of charge carriers to 102. Observing Eq. (S34), we note that using 

slower probe electrons would also increase the sensitivity of CDEM. 

 We now estimate the expected energy shift for a particular example: a superconductor 

phase transition. Consider a vortex tube of a single magnetic flux quantum (Φ0 = ℎ 2𝑒⁄ ) trapped 

in a type-II superconductor. The magnetic field distribution of a single vortex in the 𝑟 → 0 limit is 

given by59 

𝐵(𝑟 → 0) ≅
Φ0

2𝜋 𝜆2
ln 𝜅 , (S35) 
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where 𝜅 = 𝜆/𝜉 is the Ginzburg-Landau parameter, 𝜉 is the superconducting coherence length 

(from Ginzburg-Landau theory), and 𝜆 is the London penetration depth. From magnetostatics, the 

magnetic field at the vortex center is connected to the total current in the loop circumference via 

𝐵(𝑟 = 0) =
𝜇0

2𝑅
𝐼, (S36) 

where 𝑅 = 𝜉 is the vortex radius. Equating both expressions for the magnetic field, we retrieve the 

total current: 

𝐼 =
ℏ

𝑒𝜇0

ln 𝜅

𝜆𝜅
. (S37) 

Since 𝜅 > 1 √2⁄  in type-II superconductors, using a conservative estimate for the London 

penetration depth (𝜆 = 100 nm), we obtain a typical current of 10−3 A. The ability of CDEM to 

detect such a vortex loop being created or annihilated, on the characteristic 1-10 ps timescale,57 

depends on both the coherence length and the London penetration depth of the superconducting 

material. According to Eq. (S34), the expected energy shift is of the order of 10 meV, which is 

right on the frontier of current electron spectrometers in state-of-the-art TEMs. This value can be 

increased by using a superconducting material with a longer coherence length or shorter London 

penetration depth. 
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Spatiotemporal maps of electron energy shifts for a straight-edge sample geometry 

This section presents additional CDEM experiments performed on a sample with a different 

geometry. Figure S2 provides a clearer view of the THz pulse free-space propagation, repeating 

the STEM-EELS measurements shown in Figure 2A of the main text for a simpler straight-edge 

crystal geometry (i.e., without a triangular tip, as depicted in Figure S1). Moreover, the results in 

Figure S2 are captured using a larger field of view relative to Figure 2A (140 × 150 μm2), 

obtained by tuning the electron lens current. In this way, certain features of the THz pulse near-

field evolution are better elucidated. 

 

 
Figure S2. Spatiotemporal maps of electron energy shifts for a straight-edge sample geometry. These maps of 

electron energy shifts are captured in a similar fashion to the ones displayed in Figure 2A of the main text, but for a 

straight-edge crystal (i.e., without a triangular tip) and setting the electron lenses to obtain a larger field of view. The 

pump laser pulse is traveling along the x axis, impinging the crystal normal to the surface at the 𝑥 = 0 plane (yellow 

arrow in the 0 ps panel). The pump pulse energy is 10 nJ. 
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Spatiotemporal maps of electron energy shifts focusing on the InAs crystal tip 

This section presents additional CDEM experiments, focusing on a smaller 5 × 5 μm2 region 

around the InAs crystal tip. Parts of this data are also shown in Figure 2C of the main text. 

 

 
Figure S3. Spatiotemporal maps of electron energy shifts focusing on the InAs crystal tip. Measured 

spatiotemporal maps of electron-beam energy shifts, focusing on the InAs crystal tip (5 × 5 μm2 region), with probe 

electron spot size of 50 nm. The pump laser pulse is incident along the x axis, normal to the crystal surface and centered 

at the tip (x,y,z = 0), as illustrated by the yellow arrow in the 0 ps panel. 
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Movie S1. Spatiotemporal maps of electron energy shifts for the triangular geometry. Movie 

of the data presented in the panels of Figure 2A of the main text. 

 

Movie S2. Spatiotemporal maps of electron energy shifts for the straight-edge geometry. 

Movie of the data presented in the panels of Figure S2. 

 

Movie S3. Spatiotemporal evolution of the reconstructed charge density. Movie depicting a 

three-dimensional reconstruction of the charge density, in which the InAs crystal is cut along the 

𝑧 = 0 and 𝑥 = 0 planes. 


