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Light emission from strongly driven 
many-body systems

Andrea Pizzi1,2,6, Alexey Gorlach3,6, Nicholas Rivera1,4 , 
Andreas Nunnenkamp    5 & Ido Kaminer    3 

Strongly driven systems of emitters offer an attractive source of light 
over broad spectral ranges up to the X-ray region. A key limitation of 
these systems is that the light they emit is mostly classical. We overcome 
this constraint by building a quantum-optical theory of strongly driven 
many-body systems, showing that the presence of correlations among the 
emitters creates emission of non-classical many-photon states of light.  
We consider the example of high-harmonic generation, by which a strongly 
driven system emits photons at integer multiples of the drive frequency. 
In the conventional case of uncorrelated emitters, the harmonics are in an 
almost perfectly multi-mode coherent state lacking any correlation between 
harmonics. By contrast, a correlation of the emitters before the strong drive 
is converted into non-classical features of the output light, including doubly 
peaked photon statistics, ring-shaped Wigner functions and correlations 
between harmonics. We propose schemes for implementing these concepts, 
creating the correlations between emitters via an interaction between  
them or their joint interaction with the background electromagnetic field. 
Our work paves the way towards the engineering of novel states of light  
over a broadband spectrum and suggests high-harmonic generation  
as a tool for characterizing correlations in many-body systems with 
attosecond temporal resolution.

The creation and control of many-photon quantum states of light are 
important problems with applications across the natural sciences. 
Realizations of squeezed quantum light states open new avenues in 
spectroscopy and metrology, providing novel information on sam-
ples1 and enabling highly sensitive measurements beyond classical 
noise limits (for example, in the detection of gravitational waves2,3). 
At the same time, encoding quantum information on the quantum 
state of light facilitates applications in quantum computing, simu-
lation and communication4. Several pioneering investigations have 
demonstrated a range of many-photon quantum states of light such 
as squeezed light2,3,5–7, bright squeezed vacuum8–11, displaced Fock 
states12, Schrödinger kitten13,14 and cat states15,16, subtracted squeezed 

states17 and others18. Many of the established techniques for generating 
quantum light at optical frequencies rely on materials with a non-linear 
optical response. Such non-linear materials can be typically described 
using a ‘perturbative’ non-linear response, where the induced polari-
zation is, for example, quadratic or cubic in the applied electric field.

At the other extreme of non-linear optics are ‘non-perturbative’ or 
‘strong-field’ effects such as high-harmonic generation (HHG), in which 
a very intense optical pulse creates radiation at very high frequencies, 
even beyond hundred fold the frequency of the drive19,20. As such, HHG 
is an attractive source of ultra-short pulses of high-frequency light. The 
potential of HHG for the generation of non-classical high-frequency 
light has, however, remained largely unexpressed. In fact, many 
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consider the standard scenario in which the atoms are initially in their 
ground state and show that the emission resulting from the strong 
drive is in this case essentially coherent: the Wigner function and pho-
ton statistics of the harmonics are almost Gaussian and Poissonian, 
respectively, and the different harmonics are uncorrelated. Second, 
we investigate the effect of strong atomic correlations on the output 
radiation, showing that, when the emitters are initially in a correlated 
(and thus non-separable) many-body state, the output radiation 
becomes non-classical, featuring non-Gaussian Wigner functions, 
non-Poissonian photon statistics and correlated harmonic pairs. Third, 
we propose two experimentally relevant schemes exploiting 
inter-atomic interactions and super-radiance, respectively, to induce 
correlations in the atomic initial condition, resulting in controllably 
non-classical output radiation. An expanded and detailed version of 
the following theory is presented in Supplementary Sects. S1–S6. In 
the following, Hartree atomic units (me = ℏ = e = a0 = 1 and c = 137) 
are used unless otherwise specified.

Quantum theory of strongly driven many-body systems
We consider N microscopic emitters (henceforth referred to as ‘atoms’ 
for convenience) interacting with a strong driving field. The Hamilto-
nian describing the system reads

̂H = ∑
N

i=1
̂H
i
atom +∑

N

i=1 d̂i ⋅ Ê (ri) +
̂HF, (1)

where ri and d̂i are the position and dipole moment of the ith atom, 
respectively, ̂HF = ∑kσ ℏωk ̂a†kσ ̂akσ  is the free-field Hamiltonian, with 
̂a†kσ  and ̂akσ  the creation and annihilation operators of a photon  

with wavevector k and polarization σ, respectively, and ̂H
i
atom is the 

single-particle Hamiltonian describing the outermost electron of  
the ith atom. The eigenvalue problem ̂H

i
atom |m⟩ = wm |m⟩  is solved  

via standard space discretization procedures, resulting in a discrete 
single-particle spectrum composed of hundreds of levels, most of 
which are in the continuum, wm > 0 (Supplementary Sect. S1).

The atomic system is driven with a laser whose field we take as a 
multi-mode coherent state |ψlaser (t)⟩ = ∏k ||αkeiωkt⟩ , where αk is  

past semi-classical approaches21–23 and more recent fully quantized  
ones14,24–26 have established that the output harmonics in HHG are in an 
almost precisely coherent (thus, classical) state (apart from the nota-
ble exception of post-selected cat states in the driving frequency14). 
Nonetheless, these works all focus on the scenario of uncorrelated 
emitters, leaving open important questions about many-body aspects 
underlying HHG, in particular the extent to which correlations between 
the emitters affect the state of light created in the HHG process.

In this work, we develop a quantum-optical theory of light emis-
sion by strongly driven many-body systems. We use this theory to show 
that many-body correlations in the emitters can render the output 
radiation strongly non-classical (Fig. 1). To demonstrate this concept, 
we show that HHG from a correlated many-body state of emitters fea-
tures exotic photonic states, for instance, super-Poissonian and doubly 
peaked photon number statistics, ring-shaped Wigner functions and 
strong correlations between harmonics. These features strongly con-
trast with conventional HHG from uncorrelated emitters, in which the 
output harmonics are described by almost perfectly Poissonian photon 
statistics, Gaussian Wigner functions and uncorrelated harmonics.

Indeed, the quantum state of the emitted light can be shaped by 
creating different correlations among the emitters. We show this gen-
eral idea by investigating two concrete scenarios, one in which correla-
tions among the emitters are induced through collective super-radiant 
emission and one in which they arise from dipole–dipole-type interac-
tions. Our study makes the first step towards the creation of bright 
high-frequency light with engineered quantum properties. Applying 
this concept in reverse, characterizing the quantum photonic state of 
the emitted light will enable to infer the many-body correlations of the 
material with high temporal resolution.

Results
We develop a quantum-optical theory that describes the interaction 
among an intense driving field, a quantum-correlated (many-body) 
atomic system and the quantized radiation emitted from it. For a given 
initial atomic condition, our theory produces a full portrait of the emit-
ted quantum light, including the Wigner function, photon number 
statistics and correlation between different harmonics. First, we 
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Fig. 1 | Quantum theory of light emission by strongly driven many-body 
atomic systems. a, HHG can be understood as a single-particle, strong-field 
three-step process: (1) an intense drive laser tears off an electron from the 
atom, (2) the electron is accelerated by the electric field and (3) the electron 
recombines with the atom, converting its energy into an energetic photon at 
higher harmonics. The spectrum features are peaks at the odd harmonics,  

a characteristic plateau and a cut-off. b, The many-body correlations among  
the atoms can arise from spontaneous collective emission (super-radiance)  
or inter-atomic interactions. c, Our theory marries the description of  
many-body effects with that of strong-field physics, giving access to unique 
quantum properties of the emitted light.
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the parameter of a coherent state with frequency ωk. Using a  
unitary transformation (generated by a displacement operator)26–30, 
the electric field Ê(r, t) can be separated into a classical  
part Ec (r, t) = ⟨ψlaser (t) |Ê(r)|ψlaser(t)⟩  and a quantum part Êq (r, t) 
= −∑kσ εkσ (gkσeik⋅r ̂akσ(t) + g∗kσe

−ik⋅r ̂a†kσ(t)) , where gkσ = i√
2𝜋𝜋ωk
V

, εkσ 

is the polarization vector of the mode kσ, and V is the volume. The term 
Êq represents quantum fluctuations of the electric field. We are inter-
ested in describing emission in vacuum, for which V → ∞ and the modes 
are continuous. Under the action of the displacement operator, the 
initial photonic state changes from |ψlaser⟩ to the vacuum with zero 
photons |0〉, and the photonic state only describes the radiation on top 
of the drive laser. Assuming the dipoles d̂i to be polarized in the x direc-
tion, the light–matter coupling term in equation (1) can be rewritten 
as ∑N

i
̂xi ̂E (ri), where Ê = Ê·ex. In its single-particle version with N = 1 atom, 

the above model is known to capture the main features of HHG, includ-
ing the characteristic plateau and cut-off of the emission spectrum21,22 
(Fig. 1b). Here, we wish to investigate the effects that many-body atomic 
correlations for N≫ 1 have on the emitted output light. Due to the 
exponential (in N) size of the Hilbert space, such a many-body problem 
is in general a formidable one. We make it tractable by considering  
the simplest yet far from trivial scenario, one in which the spatial 
arrangement of the atoms is negligible. In this case, the state of the 
system can remain symmetric, meaning invariant under any permuta-
tion of the atoms, thus making the atoms effectively indistinguishable. 
While the assumption of indistinguishable atoms is physically justified 
in some cases, for example, when the atoms are in a small volume with 
respect to the involved interaction ranges and wavelengths, it can 
qualitatively describe multiple many-body phenomena even when not 
fully justified, similarly to what happens for instance for 
super-radiance31,32, spin squeezing33 and countless equilibrium phase 
transitions34,35. Indeed, this assumption opens the way to much analyti-
cal progress, which brings the ultimate numerical simulation of the 
system into reach and greatly facilitates physical intuition on the core 
involved physics.

The first key step is to note that, thanks to the atoms’ permuta-
tional symmetry above, and according to a procedure analogous to 
second quantization, the state of the atomic system can be expressed 
in terms of atomic Fock states |n〉 = |n1, n2, …, nm, …〉 with nm the number 
of atoms in the mth single-particle level of ̂H

i
atom (Supplementary  

Sect. S2). In terms of standard bosonic creation and annihilation 

operators ̂b
†
m and ̂bm, these states read |n⟩ = (∏m ( ̂b

†
m)

nm

/√nm!) |0⟩, 

whereas the Hamiltonian in equation (1) yields

̂H = b̂†Wb̂ − (Ec + ̂Eq) b̂†Db̂ +∑
kσ
ωk ̂a†kσ ̂akσ, (2)

where W is a diagonal matrix with single-atom energies as entries, 
namely Wmn = δmnwm, D is a dipole matrix with entries Dmn = ⟨m| ̂x |n⟩ 
and where we called b̂ = ( ̂b1; ̂b2; …)  the column vector of bosonic 

annihilation operators and b̂† = ( ̂b
†
1 , ̂b

†
2 ,…) the row vector of bosonic 

creation operators. In particular, the first two modes, ̂b1 and ̂b2,  
refer to the single-particle ground and first excited states |g⟩ and |e⟩, 
respectively. The Heisenberg equations associated with equation (2)  
read

⎧
⎨
⎩

db̂
dt
= −i (W − (Ec + ̂Eq)D) b̂,

d ̂akσ
dt

= −iωk ̂akσ + ig∗kσεkσb̂
†Db̂.

(3)

To solve equation (3) we neglect the quantized part of the  
field ̂Eq in favour of the strong classical drive Ec, as is customary for 

HHG22,36–38. Indeed, this makes the atomic equation linear, which allows 
us to write

b̂ (t) = F (t) b̂ (0) , F (t) = T exp (−i
t

∫
0
(W − Ec (τ)D)dτ) , (4)

a time evolution matrix, and T denoting time ordering. As for the 
photons, integrating the second equation in equation (3), and plugging 
equation (4) in, we get

̂akσ(t) = ̂akσ (0) + ig∗kσεkσb̂
† (0) D̃ (ωk) b̂ (0) . (5)

where D̃(ω) = ∫t0dτeiω(τ−t)F† (τ)DF (τ). Considering only initial condi-
tions with atoms in the two lowest single-particle states |g⟩ and |e⟩, we 

can effectively make the replacements b̂† (0) → ( ̂b
†
1 (0) , ̂b

†
2 (0)) , 

b̂ (0) → (
̂b1 (0)
̂b2 (0)

)  and D̃→ d̃ = ( d̃11 d̃12
d̃21 d̃22

) , which will henceforth 

be implicit in our notation. That is, for this class of initial conditions, 
the information contained in the M × M-dimensional matrix F,  
which accounts for all the atomic levels including the continuum,  
gets compressed into the 2 × 2-dimensional matrix d̃. Next, we  
introduce the mode ̂an of the nth harmonic as a normalized sum 
̂an =

1
√𝒩𝒩

∑k∈n ̂akσ (tf), with tf the time at which the pulse is over, and 
running over wavevectors k within a given solid angle dΩ and with 
frequency ωk within the range (nωd −

dω
2
, nωd +

dω
2
) , which should  

be thought of as those characterizing a detector used to collect  
the output light. Enforcing [ ̂an, ̂a†n] = 1 , we find 𝒩𝒩 = n2ω2

dVdΩ

(2𝜋𝜋)3c3
dω   

and get

̂an = ̂an (0) + b̂† (0)dnb̂ (0) , (6)

with dn =√
dΩ
4𝜋𝜋

n3ω3
d

πc3
dω d̃ (nωd) . We can decompose the matrix dn in 

terms of Pauli matrices as , where  

is a complex number, un and vn are two three-component real  
vectors and σ = (σx, σy, σz)  is the vector of Pauli matrices. We note  
that N = b̂† (0) b̂ (0) and that Ŝ = ( ̂Sx, ̂Sy, ̂Sz) = ∑N

j σ̂j = b̂† (0)σb̂ (0),  
with σ̂j = (|e⟩j ⟨g|j + |g⟩j ⟨e|j , i (|g⟩j ⟨e|j − |e⟩j ⟨g|j) , |e⟩j ⟨e|j − |g⟩j ⟨g|j)  the  
Pauli operators describing the transition between each atom’s  
ground and first excited states |g⟩ and |e⟩, respectively. We can thus 
rewrite equation (6) in terms of standard collective spin operators for  
N spins 1/2 as

̂an = ̂an (0) + αn + (un + ivn) ⋅ Ŝ. (7)

Equation (7) enables to present in a compact form some of the 
main achievements of our theory. This equation directly links the initial 
state of the atoms Ŝ to the output state of the photons ̂an, which is thus 
fully characterized.

From equation (7) we can directly understand under what condi-
tions HHG does or does not follow the conventional scenario of classical 
emission (that is, of harmonics in a multi-mode coherent state). Specifi-
cally, if the atoms are in a state with a well-defined large-N classical limit, 
then Ŝ ≈ ⟨Ŝ⟩ and every mode ̂an is approximately a coherent state of 
parameter αn + (un + ivn) ⋅ ⟨Ŝ⟩. More precisely, when the atoms are all 
in the same single-particle state |s〉 with , then Ŝ = Ns and 
the combined output state of multiple harmonics is a multi-mode 
coherent state |ψharmonics⟩ ≈ ∏n |αn + N (un + ivn) ⋅ s⟩. This is the case 
for conventional (ground state) HHG, which has s = −ez. We note in 
passing that these considerations allow to maximize the yield of the n
th harmonic by just finding the orientation s that maximizes 
|αn + N (un + ivn) ⋅ s|, and by preparing the atoms to such orientation 
with a simple coherent (rotation) pulse before the strong drive. 

http://www.nature.com/naturephysics
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However, if the system is in a quantum correlated many-body state 
lacking a clear classical limit, the replacement Ŝ → ⟨Ŝ⟩ in equation (7) 
becomes illegitimate, and Ŝ should be considered with its full- 
fledged operatorial nature. This is the most interesting scenario, in  
which the emitted light can strongly deviate from a multi-mode  
coherent state.

Moreover, from a computational point of view, equation (7) pro-
vides a way to represent the harmonics’ photon operators ̂an as  
sparse (N + 1) × (N + 1)-dimensional matrices. Indeed, the collective spin 
operators Ŝ = ( ̂Sx, ̂Sy, ̂Sz)  have a standard and well-known matrix  
representation, and the whole complexity of the theory lies now in the 
terms αn, un and vn, which can be found by solving the HHG dynamics 
in equation (4) (accounting for the full atomic spectrum including its 
continuum) and that can be conveniently computed once and for all, 
in the sense that they do not change when changing the number of 
atoms nor their initial condition. Instead, the terms αn, un and vn depend 
on the specific structure of the atoms and on the drive. As a limit case, 
we note that |αn|, |un| and |vn| vanish for vanishing drive intensity, in 
which case the created photonic states ̂an in equation (7) are simply the 
vacuum state (no emission).

The theory above allows in particular to compute normally 

ordered moments ⟨( ̂a†n)
m
( ̂an)

l⟩ = Tr (ρ̂ (0) ( ̂a†n)
m
( ̂an)

l), for which the 

vacuum term ̂an (0) in equation (7) can be omitted. Containing the full 
information on the emission, these moments can be used to recon-
struct, for each harmonic and for a given atomic initial condition ρ̂ (0), 
the Wigner function W(α), the photon statistics, the normalized 

second-order correlation function g(2)(0) = ⟨ ̂a†n ̂a†n ̂an ̂an⟩ / ⟨ ̂a†n ̂an⟩
2
 and 

the Mandel Q parameter Q = ⟨ ̂a†n ̂an⟩ (g(2)(0) − 1)  (Supplementary 

Sect. S5). Indeed, our theory provides access to much more than that, 
namely it allows to compute any multi-mode normally ordered moment 

( ̂a†n1)
m1
( ̂a†n2)

m2
…( ̂an1 )

l1 ( ̂an2 )
l2 …, from which the full information on 

the joint multi-mode state of the harmonics n1, n2, …, including on the 
entanglement among them, can in principle be reconstructed. As an 
example, we use the two-mode moments to compute the joint photon 
number statistics of two modes and the associated Parson correlation 
coefficient and mutual information. Finally, to help visualize the atomic 
state at times t ≤ 0, we also compute the Wigner function of the atomic 
system on the Bloch sphere (whose axes can be thought of as corre-
sponding to ̂Sx, ̂Sy and ̂Sz)39.

As for ̂H
i
atom in equation (1), in the following we follow convention 

in strong field physics and model each emitter as a single electron in a 
one-dimensional trapping potential22,37,38,40. Specifically, we consider 

a single-particle Hamiltonian ̂H
i
atom = ̂p2i

2
+ V( ̂xi) , with ̂xi and ̂pi the 

conjugate position and momentum operators of the ith atom, respec-
tively, V (x) = − 1

√x2+a2
+ Vab a softened Coulomb potential and Vab an 

imaginary potential accounting for absorbing boundaries to avoid 
unphysical reflections of the electrons41. The parameter a is set to 0.816 
to match the ionization potential of Ne, Ip = 0.792 (ref. 41).

We finally note that, alternatively, equation (7) can be solved effi-
ciently within a phase space approximation upon replacing the atomic 
operators Ŝ with an ensemble of classical initial conditions on the Bloch 
sphere that reflects the quantum fluctuations of the actual initial wave-
function (see Supplementary Sect. S8 for details).

Emitted radiation from strongly driven many-body systems
We now use our formalism to numerically investigate the properties 
of the radiation emitted from a many-body atomic system. We will 
discuss quantum features of HHG that deviate from the established 
expectation (that the emitted light is coherent14,26,36) in a way that 
depends on the correlations among the atoms. We consider a strong 
monochromatic coherent drive Ec(t) at a frequency ωd and with a 

trapezoidal pulse shape (with the amplitude increasing linearly to 
its maximum E0 during the first quarter of the pulse and decreasing  
to 0 during the last). The spectrum of the resulting emitted radiation 
is depicted in Fig. 1b and features the distinctive traits of HHG, namely 
a comb of peaks at the odd harmonics extending over a plateau up to  
a cut-off frequency21,22.

Beyond reproducing these well-known features of HHG, which 
also emerge from a classical single-atom theory21,22, our method also 
captures genuinely quantum many-body ones. For instance, Fig. 2 
shows the photon number statistics and Wigner function for selected 
harmonics and atomic initial conditions. For conventional HHG, for 
which all the atoms are initially in their ground state |⇓⟩ ≡ ⊗N

i=1 |g⟩i   
(Fig. 2, left column), we confirm expectations showing an essentially 
coherent emission: at the odd harmonics, the correlation function g(2), 
the Wigner function and the photon statistics are almost perfectly 
unitary, Gaussian and Poissonian, respectively. In fact, the classical 
character of the emission persists as long as the atoms are initially 

in an uncorrelated product state, for example, |⇒⟩ ≡ ⊗N
i=1

|g⟩i+|e⟩i
√2

, 

which can be easily obtained from |⇓⟩ with a coherent π/2 pulse (Fig. 2, 
central column). These results can be understood from equation (7) 
upon replacing Ŝ with its classical limit, namely −Nez for |⇓⟩ and Nex  
for |⇒⟩. The emission is in this case classical, consisting of a cross  
product of coherent states |ψharmonics⟩ ≈ ∏n

||αn − N (un,3 + ivn,3)⟩ and 
|ψharmonics⟩ ≈ ∏n

||αn + N (un,1 + ivn,1)⟩ , respectively. In this case of 
emission from uncorrelated atoms, any deviation of the output light 
from a coherent state is due to the error in the replacement Ŝ → ⟨Ŝ⟩, 
which is however very small in the classical limit of large N. We can 
quantify the deviation from a coherent state using g(2), which strays 
from the coherent-state value 1 by ∼1/N.

The situation changes drastically when many-body correlations are 
imprinted in the atomic state at the moment of interaction with the drive 
field (t = 0), for which the atomic state, and therefore the emission, 
become highly non-classical. To test this idea, in the right column of  
Fig. 2 we consider the system initially in the Dicke-like state |N/2⟩, which 
is the symmetric superposition of states with half of the atoms in the 
ground state |g⟩ and the other half in the first excited state |e⟩ (in the 
bosonic language above, such a state is denoted |N/2, N/2, 0, 0, 0,…⟩). 
This state is strongly correlated, and its atomic Wigner function on  
the Bloch sphere appears as a ring with weak fringes embracing the 
equator. For comparison, such a Wigner function is fundamentally  
different from that of the uncorrelated states |⇓⟩ and |⇒⟩, which  
appear as two blobs around the south and east poles, respectively. The 
difference in the atomic state gets mirrored onto the emission:  
while the radiation from |⇓⟩ and |⇒⟩ is classical, in the sense of close to 
coherent, that from |N/2〉 is very much not so, its photon statistics and 
Wigner functions being strongly non-Poissonian and non-Gaussian, 
respectively.

The difference in photon statistics can be quantified by the normal-
ized second-order correlation function g(2), that, for instance, for the 
21st harmonics takes values of 1.00002 and 1.71 for initial atomic states 
|⇓⟩ and |N/2⟩, respectively. Indeed, in the latter case, the correlations 
initially imprinted in the atoms can result in more strikingly quantum 
features, such as ring-shaped Wigner functions and double-peaked 
photon distributions, which appear to interpolate between a thermal 
and a coherent state.

Intuition into the shape of the photonic Wigner function is  
provided by equation (7). Therein, the term (un + ivn) ⋅ Ŝ  acts as a  
projection from the three-dimensional space of the atomic Bloch 
sphere onto the plane individuated by un and vn, which becomes the 
plane of the two quadratures of an. The constant αn corresponds  
to a coherent shift, and the term ̂an (0) adds vacuum fluctuations  
with a blurring effect. In this sense, the non-trivial atomic state on  
the Bloch sphere gets mirrored onto a non-trivial output photonic  
state.
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Engineering and controlling states of light
In the previous section, simulating emission from the state |N/2⟩  
helped emphasize the role of atomic correlations in creating unusual 
states of light, showing the concept of non-classical light emission 
from non-classical states of the emitters42,43. However, the Dicke-like 
state |N/2⟩ might be challenging to realize in experiments, and thus we 
propose two different schemes that use coherent control44 (starting 
from atoms initially in their ground state) to induce atomic correlations 
that resemble the ones of the |N/2⟩ state, resulting in non-classical light 
emission akin to that from |N/2⟩ (Figs. 3 and 4). In each scheme, we find 
the same concept: that the strongly driven many-body systems can 
generate bright and strongly non-coherent radiation. The schemes 
that we propose consist of three main steps: (1) a short preparation 
pulse brings the atoms into a coherent superposition of excited and 
ground states, (2) correlations between atoms build up under the sys-
tem’s own dynamics throughout a hold time th and (3) the main driving 
pulse is applied, resulting in HHG emission with unconventional prop-
erties. For concreteness, we will consider the scenario in which cor-
relations result from inter-atomic interactions, and one in which they 
are induced through super-radiance (for details and complementary 
results, see Supplementary Sects. S3 and S7).

Let us begin by considering the scenario in which atomic correla-
tions are induced through super-radiance31,32 (Fig. 3). Super-radiance 
is the phenomenon whereby the spontaneous emission from an 
ensemble of excited emitters can be much stronger than one would 
expect if they emitted independently. With a long history, super- 
radiance has played an important role in optics and quantum 
mechanics, for instance with applications in quantum metrology45, 
as well as in relativity and astrophysics46. Crucially, super-radiance 
creates quantum correlations among the atoms, induced by their 
joint interaction with the surrounding electromagnetic field. Here, 
we exploit this feature of super-radiance to controllably prepare the 
atoms in a correlated state, resulting in non-classical HHG upon 
subjecting the system to a strong drive. The specific protocol we 
consider is illustrated in Fig. 3a, and unfolds as follows: A coherent 
π pulse brings the atoms from |⇓⟩ to |⇑⟩ ≡ ⊗N

i=1 |e⟩i at time t = −th. From 
|⇑⟩, the system tends to decay back to |⇓⟩ via super-radiance, which 
involves the build up of correlations between atoms. The super- 
radiance process is however intermitted by the beginning of the  
HHG pulse after a time th, that is, at time t = 0. The parameter th thus 
offers a handle to control the initial atomic condition ρ̂(0)  
of the HHG emission. More explicitly, we find ρ̂(0) by numerically 
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Fig. 2 | Many-body HHG. We investigate the emission for some representative 
odd harmonics (n = 15, 21 and 55 in the top, middle and bottom rows, respectively) 
and from selected atomic initial conditions (|⇓⟩, |⇒⟩ and ||N/2⟩ in the left, centre 
and right columns, respectively). To help visualize the atomic initial conditions, 
we plot their Wigner function on the Bloch sphere (normalized with respect to 
their maximum value Wmax). The HHG emission from atoms initially in the ground 
state |⇓⟩ is essentially coherent and, thus, classical (left column). The Wigner 
function of the input atomic state is Gaussian (around the south pole on the Bloch 
sphere), like the Wigner function of the output HHG emission, plotted in the 
plane of the two quadratures X and P. The photon number statistics is excellently 
fitted by a Poisson distribution (red), and the normalized second-order 
correlation function g(2) (blue) is close to 1 (deviations are of order 1/N). The 

classical character of the emission holds for other uncorrelated initial conditions, 
such as the state |⇒⟩, obtained from |⇓⟩ with a π/2 coherent pulse (central 
column). In striking contrast, strong correlations in the initial condition, for 
example, for the state ||N/2⟩, whose atomic Wigner function embraces the Bloch 
sphere like a belt around the equator, result in highly non-classical light (right 
column). Indeed, the Wigner distribution and photon statistics at the odd 
harmonics are strongly non-Gaussian and super-Poissonian, respectively. For 
instance, in the case of the 15th harmonic, we observe doubly peaked photon 
statistics. The simulations in these panels assume ℏωd = 1.55 eV, E0 = 60 GV m−1, 
N = 6.2 × 104 and 40 cycles of the drive. The atomic Wigner functions were 
obtained for N = 100.
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integrating from t = −th to t = 0 the following collective Lindblad 
master equation describing super-radiance32,47,48:

dρ̂
dt
= γ ( ̂S

−
ρ̂ ̂S

+
− 1

2
{ ̂S

+ ̂S
−
, ρ̂}) , (8)

With γ the emission rate and starting from ρ̂ (−th) = |⇑⟩ ⟨⇑|. Equa-
tion (8), whose solution is facilitated by the diagonal nature of ρ̂(t), 
captures the distinctive bell-shaped time profile of the super-radiance 

emission intensity, with maximum emission after a time tm ≈ logN
4γN

 

(ref. 32), as well as the build-up of atomic correlations. The state of the 
system through the super-radiance process can be visualized in term 
of the atomic Wigner function on the Bloch sphere (Fig. 3a). The atomic 
Wigner function, initially concentrated around the north pole for 
ρ̂ (−th) = |⇑⟩ ⟨⇑|, ‘cascades’ around the Bloch sphere during super- 
radiance. Halfway through the decay, the atomic Wigner wraps the 
sphere in a way that is reminiscent of the Wigner function of the Dicke 
state |N/2⟩ in Fig. 2, although with a much wider broadening along  
the z axis. This perspective suggests that we should be able to obtain 
non-classical emission akin to that from |N/2⟩.

The second-order correlation function g(2)(0) and Mandel Q param-
eter of the emission resulting from a strong drive are shown in Fig. 3b 

for a few selected harmonics. A classical emission (g(2)(0) = 1 and Q = 0) 
is obtained for both th = 0, for which super-radiance does not have  
the time to start and ρ̂ (0) = |⇑⟩ ⟨⇑|, and for th ≫ tm, for which super- 
radiance makes all atoms decay and ρ̂ (0) ≈ |⇑⟩ ⟨⇑|. In between these 
two limit cases, ρ̂ (0) is non-trivial and accounts for correlations among 
the atoms, which directly translates onto a non-classical emission with 
harmonics strongly deviating from a coherent state (g(2)(0) > 1 and 
Q > 0). The full portrait of the harmonics is given in Fig. 3c in terms of 
photonic Wigner functions. These are approximately Gaussian for th = 0 
and th ≫ tm but acquire a richer structure for intermediate th.  
In particular, for th = tm, that is, shining the strong drive pulse onto  
the system when its super-radiance intensity is at its maximum, we find, 
as hoped, photonic Wigner functions reminiscent of those obtained 
for |N/2⟩ in Fig. 2, although more blurred.

Second, we exemplify the concept of HHG from a many-body sys-
tem correlated through interactions by considering the case in which, 
before the pulse (that is, at t < 0), the atomic system is described by the 
one-axis twisting Hamiltonian33

̂H = ω0

2
̂Sz +

ωJ

N
̂S
2
z . (9)

In equation (9), the first term is nothing but the original ̂H
i
atom but 

restricted to the two lowest single-particle levels |g⟩ and |e⟩, with 
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Fig. 3 | Quantum light from strongly driven super-radiant atoms. Super-
radiance is exploited as a means to induce correlations in the atomic initial 
condition ρ̂(0), leading to unconventional HHG. a, Schematic representation of 
the adopted three-step protocol in which the atoms (1) are excited from |⇓⟩ to |⇑⟩ 
with a π pulse, (2) decay through super-radiance over a hold time th and (3) are 
subjected to a strong drive pulse leading to HHG. b, The correlation function 
g(2)(0) and Mandel Q parameter of the emitted harmonics depend on the amount 
of atomic correlations at t = 0, that is, on the hold time th. c, The Wigner functions 
of the harmonics are approximately Gaussian for th = 0 (for which ρ̂ (0) = |⇑⟩ ⟨⇑|) 

and th ≫ tm (for which ρ̂ (0) ≈ |⇓⟩ ⟨⇓|), whereas they develop non-coherent 
features for intermediate hold times th in the order of tm. In particular, for th = tm 
the emission is highly non-classical and looks reminiscent of that from the Dicke 
state ||N/2⟩. On top, the time profiles of atomic magnetization and emission 
intensity are reported. The vertical gray lines serve as a reference and correspond 
to the hold times for which the Wigner function of the output harmonics is 
shown. These simulations considered ωd = 1.55 eV, E0 = 60 GV m−1, γN = 0.1, N = 3.7 
× 104 and 40 cycles of the drive. The atomic Wigner functions on the Bloch 
spheres in a were obtained for N = 100 and th = 1.3tm.
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ω0 = 0.49 the energy difference between them. The second term, of 
strength ωJ and normalized by N to guarantee extensivity, accounts 
instead for a collective interaction. This can, for instance, occur in 
trapped cold atoms in optical cavities49,50 and is standard in the context 
of spin squeezing33. But most importantly, from a theoretical perspec-
tive, the Hamiltonian in equation (9) preserves the atoms’ permuta-
tional symmetry, allowing the theoretical framework above to be 
readily applied.

The protocol we consider, illustrated in Fig. 4a, closely follows that 
introduced by Kitagawa and Ueda in their seminal work for spin squeez-
ing33: a π/2 pulse brings the atoms in the state |⇒⟩, from which correla-
tions develop under the action of the twisting term ̂S

2
z in equation (9). 

The action of the latter can be effectively visualized in terms of the 
atomic Wigner function on the Bloch sphere, which gets progressively 
more and more sheared, wrapping around the Bloch sphere to embrace 
its equator. This perspective suggests how, for long enough hold times 
th, the state of the atoms becomes akin to that of |N/2⟩, whose Wigner 
function was indeed a ring encircling the equator (Fig. 2). By tuning the 
hold time th separating the two pulses, we can therefore interpolate 
from a regime of classical emission from an uncorrelated atomic state 
|⇒⟩ to one of strongly non-classical emission form a strongly correlated 
atomic state akin to |N/2⟩. In Fig. 4b, this is shown in terms of the 
second-order correlation function g(2)(0) and Mandel Q parameter, 
taking for th = 0 values of 1 and 0, respectively and corresponding to 
coherent emission, and larger values for th > 0. Figure 4c instead shows 
the Wigner function of the emitted light, showing how, starting from 

Gaussian for th = 0, it gets deformed for th > 0, becoming for long 
enough th completely analogous to that resulting from atoms initially 
in |N/2⟩, which we report as a reference.

We finally investigate the correlations between different harmon-
ics. The qualitative finding is that, while the harmonics are in a separa-
ble state in conventional ground-state HHG, they become correlated 
when the atoms are prepared in a correlated state. To facilitate this 
finding, we focus for concreteness on the second scheme considered 
above, that of interaction-induced correlations, and compute the joint 
photon statistics between two harmonics n and m, that is, the probabil-
ity p(kn, km) to observe kn photons in the mode n and km photons in the 
mode m (Fig. 5a). By changing th, we can again interpolate between an 
uncorrelated atomic state for th = 0 and a correlated atomic state akin 
to |N/2⟩ for large th. To quantify the degree of interdependence between 
the two harmonics, from the joint photon number statistics p(kn, km), 

we compute the Parson correlation coefficient c = cov(kn , km)
σkn σkm

, with 

cov(kn, km) the covariance of the photon numbers and σkn and σkm their 

s.d., and the mutual information Imn = ∑kn ,km p (kn, km) log
p(kn ,km)
p(kn)p(km)

. 

Figure 5b shows these diagnostics to vanish for th = 0, meaning that 
the harmonics are uncorrelated if the atoms are. By contrast, initially 
correlated atoms (th > 0) result in statistically dependent (Imn > 0) har-
monics. The correlation between two harmonics can be both positive 
(c > 0, as for the 21st and 55th harmonics) or negative (c < 0, as for the 
15th and 21st harmonics).
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Fig. 4 | Quantum light from strongly driven interacting atoms. The physics 
and structure of this figure are in analogy to Fig. 3, but exploiting inter-atomic 
interactions, rather than super-radiance, to induce the atomic correlations 
underpinning non-classical HHG. a, Specifically, we consider that: (1) a 
preparation π/2 pulse is applied to atoms initially in their ground state, (2) atomic 
correlations build up via inter-atomic interactions throughout a hold time th and 
(3) the system is illuminated with an intense drive laser pulse, resulting in HHG.  
b, The correlation function g(2)(0) and Mandel Q parameter of the emitted light 
depend on the amount of correlations in the atomic system at the time of the 

strong pulse, that is, on the hold time th, with th = 0 the limit of classical coherent 
emission from uncorrelated atoms. c, The properties of the emission are more 
comprehensively illustrated by the Wigner distributions of the harmonics of 
interest. Starting from Gaussian for th = 0, these are deformed for th > 0, 
becoming for thω0/2π ≳ 120 very close to those obtained for atoms initially in 
||N/2⟩ (reported in the right column as a reference). Here, we considered 
ωd = 1.55 eV, E0 = 60 GV m−1, ωJ = 2.7 eV, N = 37,000 and 40 cycles of the drive.  
The atomic Wigner functions on the Bloch spheres in a were obtained for N = 100 
and ωJth = 50.
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Path towards experimental realization. Many of the quantum-optical 
properties we predict for HHG should be within the reach of 
state-of-the-art experiments. The photon statistics, Glauber corre-
lation coefficient g(2) and Mandel parameter Q of the harmonics of 
interest can all be computed from photon counting measurements 
averaged over repeated experiments. Such measures should clearly 
distinguish emission by atoms imprinted with strong correlations 
relative to emission of classical light (for example, g(2) > 2 in Fig. 3  
versus g(2) = 1 for a coherent state). Indeed, for uncorrelated atoms 
in conventional HHG, the deviation of the emitted harmonics from 
a (classical) perfectly coherent multi-mode state are small, as shown 
in Fig. 2 and refs. 14,26. The joint photon statistics, correlation coef-
ficient and mutual information between two harmonics (Fig. 5) could 
also be extracted by photon counting detectors. Finally, the Wigner 
function of the emitted harmonics could be reconstructed via homo-
dyne detection51–53. The lower harmonics could be characterized in 
this way by established conventional means for homodyne detection 
in the visible range. Homodyne schemes for the higher harmonics  
(UV, XUV or soft-X-ray frequencies) will require new developments, 
which are gradually becoming feasible (for example, interferometers 
and sub-cycle delay lines in the XUV54–56).

In our one-dimensional atomic model, we set a = 0.816 to best 
mimic the spectrum of Ne. The choice of potential can be readily revised 
to model other emitting systems. In fact, more realistic simulations 
can be obtained by considering three-dimensional atomic Hamiltoni-
ans for ̂H

i
atom, or directly replacing the particle energies W and dipole 

moments D in equation (4) by values extracted from a density func-
tional theory simulation. This choice does not change the structure of 
the theory itself, and thus the conclusions are independent of the 
details of the model. The form and interpretation of equation (7) remain 
unchanged (only the values of αn, un and vn would change), meaning 
that the qualitative results we found carry over to more realistic  
scenarios. Indeed, this establishes the generality of the concept that 
we put forward, that of non-classical emission from correlated strongly 
driven many-body systems.

A core assumption in our theoretical derivation is that of indistin-
guishable atoms. This Dicke-like assumption makes the notoriously 
hard many-body problem tractable. The main findings of the theory 
are conveyed by equation (7), which shows the transfer of the 

non-classical states of the input emitters to the non-classical states of 
the output light. The assumption of indistinguishable atoms is legiti-
mate, for instance, when large collections of atoms occupy a small 
volume as compared with the involved radiation wavelengths. To have 
a concrete estimate of the number of atoms N fulfilling this criterion, 
consider a drive wavelength of λ = 800 nm creating the n = 15th har-
monic, with wavelength λn = λ/n = 53 nm. The volume in which atoms 
can be considered indistinguishable is V ≈ (λn/2)

3
. For an ideal gas, the 

number of particles within such a volume reads N = pV

RT
NA, with p, R, T 

and NA the pressure, gas constant, temperature and Avogadro number, 
respectively. At room temperature and atmospheric pressure, we get 
N ≈ 500, and larger N values similar or beyond those simulated in  
in Figs. 3–5 could be obtained for example just by increasing the pres-
sure and/or lowering the temperature57. The number N can be even 
greater within the emerging field of solid-state HHG, which is now 
widely explored experimentally (see, for example, refs. 58–60). Given 
that the atomic spacing between atoms in solids is usually of a few 
angstroms, one finds N ≈ 105 to 106 for the same volume above. Interest-
ingly, it might be possible to arrange the atoms over a larger volume 
(extending over many wavelengths) such that they can be effectively 
considered indistinguishable, for example, thanks to phase matching 
in atomic ensembles47,48.

In any case, the general concept of non-classical emission in HHG 
from non-classical many-body states of emitters is likely much broader 
than the indistinguishability assumption that we used here to show it. 
Indeed, numerous many-body phenomena have traditionally been 
first studied within a similar assumption, before being extended far 
beyond it. This idea applies to countless phenomena in and out of equi-
librium, including those leveraged by the preparation schemes adopted  
in Figs. 3–5 here, namely super-radiance31,32 and spin squeezing33.  
We expect the theory of strongly driven many-body systems to follow 
a similar path.

The approximation of indistinguishable atoms has here also been 
adopted to model the preparation stages, in which correlations in the 
atomic ensemble are induced via either super-radiance or inter-atomic 
interactions. In the case of super-radiance, the indistinguishability 
assumption is, for example, justified when the atoms are within a vol-
ume V ≈ (λ0/2)

3
 (ref. 32), where λ0 = 92 nm is the wavelength associated 

to the transition |e⟩ → |g⟩ and that is anyway a less stringent condition 
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that obtained from the state ||N/2⟩, reported in the last column as a reference.  
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than that analysed above with the wavelength λn of the harmonic n = 15, 
given that λ0 > λn. In the case of interaction-induced correlations,  
relevant systems include strongly interacting gases of atoms or mol-
ecules, whose interactions can be enhanced by trapping them in optical 
cavities. Such systems can realize the infinite-range (all-to-all) ̂S

2
z  

interactions (shear force terms) discussed in the previous section49,61. 
Moreover, finite-range spin–spin interactions, which are ubiquitous 
in many hot vapour62 and cold atom systems63, can also realize 
spin-squeezed states64,65 and thus should also show variants of the 
quantum features we proposed here. Another promising platform for 
exploring these ideas is Rydberg atoms49,50,66, offering the possibility 
of controllably generating correlated many-body atomic states67,68.

Note that the collective forms of the super-radiant decay and 
interactions in equation (8) and (9), respectively, have been chosen for 
pure tractability reasons, and do not represent a limitation to the valid-
ity of our general concept of emission by strongly driven correlated 
many-body systems. In fact, any procedure that creates non-classical 
states of atoms can result, in light of equation (7), in non-classical 
output harmonics.

Finally, Dicke states such as |N/2⟩ could in principle be prepared 
via post-selection in super-radiance. Specifically, if one could measure 
the number nsuper of photons spontaneously emitted during 
super-radiance (as described by equation (8)), the atoms would then 
collapse in the state ||N − nsuper⟩ consisting of a symmetric superposition 
of nsuper atoms in the ground state |g⟩ and N − nsuper atoms in the first 
excited state |e⟩. For nsuper ≈ N/2, this initial condition would lead to 
emission similar to that obtained for |N/2⟩ in Fig. 2.

Discussion and outlook
Our work proposes strongly driven many-body systems to realize 
many-photon states of light with controllable quantum features and 
over a broad spectral range up to X-ray frequencies. At the core of this 
concept is the idea that non-classical states of the emitters get reflected 
onto non-classical states of the emission. For example, equation (7) 
shows how the Wigner function of the atoms (on the Bloch sphere) gets 
effectively projected onto that of the emitted harmonics (in the plane 
of the two quadratures of light) (for example, Fig. 2). The paradigm of 
classical coherent emission in HHG, well established for conventional 
HHG from atoms initially in their single-particle ground states, can now 
be overcome: if the atoms are strongly correlated, the output harmonics 
exhibit strongly non-coherent features, such as doubly peaked photon 
statistics and intra-harmonic correlations. The challenge of engineering 
strongly non-classical states of light is therefore shifted to the compa-
rably simpler one of preparing strongly correlated atomic states. We 
considered but two examples, in which the atomic correlations are 
dynamically generated under the system’s own (undriven) dynamics 
during a preparation stage, via either super-radiance or inter-atomic 
interactions acting throughout a hold time th between an excitation 
and the HHG pulses. Varying th, one can control the amount of correla-
tions in the atoms and therefore the deviation of the harmonics from 
a multi-mode coherent state.

The ideas presented here have several potential applica-
tions. We showed that HHG emission from a correlated system has 
super-Poissonian statistics and a broadband spectrum (for example, 
g(2) > 2.0 in Fig. 3). Such bunched light could be used to enhance the 
efficiency of certain non-linear processes driven by the high harmonics. 
For comparison, in the optical range, it has been shown that, for bright 
squeezed vacuum light (for which g(2) = 3), the efficiencies of the χ(2) 
and χ(3) non-linearities increase by a factor ∼3 and ∼14, respectively10. 
The increased efficiencies motivate using our bunched high harmon-
ics to drive processes that relate to χ(2) and χ(3), such as second- and 
third-harmonic generation, which could lead to even higher frequen-
cies, producing super-Poissonian X-ray light.

The correlations between different harmonics offer new prospects 
for enhancing the signal-to-noise ratio in quantum imaging69. Such 

correlations have not been predicted by previous theories of HHG. The 
correlations between widely different harmonics could be particularly 
relevant for biological samples, which are very sensitive to ionizing 
radiation and specifically X-ray light in the water transparency window 
that can be reached using HHG70. For instance, we envision using the 
correlations between harmonics to acquire an image by measuring 
photons of a different frequency than the one interacting with the 
target sample.

Finally, our work suggests HHG as a probe to characterize many- 
body states of matter. For instance, by measuring the Wigner function 
of the output harmonics51–53, it should be possible via equation (7) to 
reconstruct the atomic Wigner function, thus accessing information 
on the many-body state of the atoms with high temporal resolution19,20. 
One of the most interesting implementations of our general concept 
would be to try to image the attosecond dynamics of vortices in super-
fluids and superconductors71, Bose–Einstein condensates72 and other 
strongly correlated many-body systems. The quantum correlations 
in such phenomena could be transferred to the quantum state of light 
and thus inferred by quantum-optical means.

The theory that we developed can be adopted or generalized in 
several different research directions. One question worth pursuing 
regards further ways of controlling the atomic initial conditions and 
thus the emitted radiation, for instance, involving more than just the 
two lowest single-particle levels. Beyond HHG, our theory can then 
be readily generalized to any strongly driven many-body system that 
emits radiation: further work should investigate the possibility of 
engineering not only the initial condition of the atoms but also the 
temporal profile of the driving pulse. An ambitious generalization of 
the theory could investigate the effects of the spatial distribution of 
the atoms, for example, in solids, going beyond the approximation of 
indistinguishable atoms. Looking forward, our work contributes to the 
ambitious goal of bringing together quantum optics and attoscience, 
suggesting a new path towards the realization of fully tuneable sources 
of intense quantum light in new spectral ranges.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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