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Section I – Interaction between a free electron and non-interacting emitters

In this section, we will derive Eqs. 1-3 of the main text, starting from the basic one-dimensional 
(1D) Hamiltonian. This 1D Hamiltonian is based on the paraxial approximation for the electron, which is 
justified in the limit where the initial energy of the electron is considerably greater than the energy that 
electron loses during the interaction with multiple emitters. This approximation is well justified under 
typical conditions inside an electron microscope where the probing electron energy lay in the 100keV range 
and the energy range of the emitters’ excitations are in the range of 1eV.

Let us start from the Hamiltonian of free relativistic (spin-less) electron, which Hamiltonian is 
derived from Klein-Gordon equation [1]:

𝐻e = 𝑚2𝑐4 + 𝑐2𝒑2.#(SI1)

We now simplify the Klein–Gordon Hamiltonian under the paraxial approximation, which results from 
linearizing the dispersion relation of the electron around its central momentum. We consider that initially 
the electrons’ momentum distribution is narrowly distributed around  and the change of momentum 𝑝0 ⋅ 𝒆𝑧
during the interaction is much smaller than . In this case we can write Taylor expansion of Hamiltonian 𝑝0
Eq. (SI1) and get:

𝐻𝑒 ≈ 𝐸0 + 𝑣0 ⋅ (𝑝𝑧 ― 𝑝0),#(SI2)

where  and  in the coordinate representation. Since the 𝐸0 = 𝑚2𝑐4 + 𝑐2𝑝0,  𝑣0 = 𝑐2𝑝0/𝐸0 𝑝𝑧 = ―𝑖ℏ∂𝑧
Hamiltonian is defined up to the constant, we can write the Hamiltonian without  and , so that:𝐸0 𝑝0𝑣0

𝐻𝑒 = ―𝑖ℏ𝑣0∂𝑧.#(SI3)

Physically, this approximation states that, regardless of the electron’s momentum, its velocity is v, which 
is a type of “no-recoil approximation”.

Now we consider the Hamiltonian of multiple non-interacting emitters:

𝐻𝑎 = ∑
𝑖
∑

𝑝
ℏ𝜔𝑝

𝑖 |𝑝𝑖⟩⟨𝑝𝑖|,#(SI4)

where the ’th energy eigenstate of the ’th emitter is labeled  and the corresponding energy eigenvalue 𝑛 𝑖 |𝑝𝑖⟩
is . In Eq. (SI4) we have two sums – over all the states  of th emitter and over all the emitters. Eq. ℏ𝜔𝑝

𝑖 |𝑝𝑖⟩ 𝑖
(SI4) gives general Hamiltonian with the only assumption that the emitters are far enough from each other 
that we can neglect interactions between them

We describe the interaction between multiple emitters and a free electron in assumption that the 
emitters are at such distance from the free electron that we can neglect the spatial size of the emitters. In 
this case, we apply dipole approximation and the Hamiltonian of the interaction between emitters and the 
free electron is:
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𝐻int = ― ∑
𝑖

𝒅𝑖 ⋅ 𝑬(𝒓𝑖
⊥ ,𝑧 ― 𝑧𝑖),#(SI5)

where  is the operator of dipole moment of th emitter and  is the electric field generated by 𝒅𝑖 𝑖 𝑬(𝒓𝑖
⊥ ,𝑧 ― 𝑧𝑖)

relativistic electron with position  at the position of th emitter ( ). This classical electric field (𝟎,𝑧) 𝑖 ― 𝒓𝑖
⊥ ,𝑧𝑖

according to [2] equals to:

𝑬(𝒓𝑖
⊥ ,𝑧 ― 𝑧𝑖) = ―

𝑒𝛾
4𝜋𝜀0

(𝑧 ― 𝑧𝑖)𝒆𝑧 + 𝑟𝑖
⊥ 𝒆 ⊥

(𝛾2(𝑧 ― 𝑧𝑖)2 + 𝑟𝑖
⊥

2)
3
2 

.#(SI6)

The dipole moment operator can be written in the basis of eigen state of the emitter:

𝒅𝑖 = ∑
𝑝,𝑞

|𝑝𝑖⟩⟨𝑞𝑖|(𝑑𝑖
𝑧,𝑝𝑞𝒆𝑧 + 𝑑𝑖

⊥ ,𝑝𝑞𝒆 ⊥ ),

where  and . 𝑑𝑖
𝑧,𝑝𝑞 = ⟨𝑝𝑖│𝒅𝑖│𝑞𝑖⟩ ⋅ 𝒆𝒛 𝑑𝑖

⊥ ,𝑝𝑞 = ⟨𝑝𝑖│𝒅𝑖│𝑞𝑖⟩ ⋅ 𝒆 ⊥

Thus, within this model, the final Hamiltonian of free electron and multiple emitters has the 
following form:

𝐻 = 𝐻𝑒 + 𝐻𝑎 + 𝐻int,#(SI7)

where all the parts of Hamiltonian are defined in Eqs. (SI 3-5). The Schrodinger equation is given by:

𝑖ℏ
∂
∂𝑡|Ψ⟩ = 𝐻|Ψ⟩,#(SI8)

where  is the joint wavefunction of emitters and the free electron. We move to the interaction picture |Ψ⟩
and get the following equation:

𝑖ℏ
∂|Ψ𝐼⟩

∂𝑡 = ℋ𝐼|Ψ𝐼⟩,#(SI9)

where  and |Ψ𝐼⟩ = 𝑈 † (𝑡)|Ψ⟩, ℋ𝐼 = 𝑈 † 𝐻int𝑈 𝑈 = exp ( ―𝑖(𝐻𝑎 + 𝐻𝑒)𝑡/ℏ).

ℋ𝐼 = 𝑈 † 𝐻int𝑈 =
𝑒𝛾

4𝜋𝜀0
∑

𝑖
∑
𝑝𝑞

𝑒 ―𝑖𝜔𝑖
𝑝𝑞𝑡𝑡𝑖

𝑝𝑞

(𝑧 + 𝑣0𝑡 ― 𝑧𝑖)𝑑𝑖
𝑧,𝑝𝑞 + 𝑟𝑖

⊥ 𝑑𝑖
⊥ ,𝑝𝑞

(𝛾2(𝑧 + 𝑣0𝑡 ― 𝑧𝑖)2 + 𝑟𝑖
⊥

2)
3
2 

,#(SI10)

where  and . The scattering matrix for Eq. (SI9) is given by:𝜔𝑝𝑞
𝑖 = 𝜔𝑝

𝑖 ― 𝜔𝑞
𝑖 𝑡𝑖

𝑝𝑞 = |𝑝𝑖⟩⟨𝑞𝑖|

𝕊 = Texp ( ―
𝑖
ℏ∫

+∞

―∞
ℋ𝐼(𝑡)𝑑𝑡),#(SI11)

where  is time-ordering exponent and scattering matrix allows to find the state of the system after the T
interaction ( ). We consider weak coupling between free electron and the emitters, 𝕊|Ψ( ―∞)⟩ = |Ψ( +∞ )⟩
and thus consider only 1st order in Magnus expansion [3] of Eq. (11):

𝕊 ≈ exp ( ―
𝑖
ℏ∫

+∞

―∞
ℋ𝐼(𝑡)𝑑𝑡).#(SI12)

The integral inside the exponent can be calculated analytically [4] and we get:

𝕊 = exp (𝑖∑
𝑖
∑
𝑝𝑞

𝑔𝑖
𝑝𝑞𝑡𝑖

𝑝𝑞𝑏𝑖
𝑝𝑞),#(SI13)



where

𝑔𝑖
𝑝𝑞 = (𝑒𝑑𝑖

⊥ ,𝑝𝑞𝜔𝑝𝑞
𝑖 𝐾1(𝜔𝑝𝑞

𝑖 𝑟𝑖
⊥

𝛾𝑣0 )
2𝜋𝜀0𝛾ℏ𝑣2

0
+ 𝑖

𝑒𝑑𝑖
𝑧,𝑝𝑞𝜔𝑝𝑞

𝑖 𝐾0(𝜔𝑝𝑞
𝑖 𝑟𝑖

⊥

𝛾𝑣0 )
2𝜋𝜀0𝛾2ℏ𝑣2

0 )𝑒
―𝑖

𝜔𝑝𝑞
𝑖 𝑧𝑖

𝑣0 ,

𝑡𝑖
𝑝𝑞 = |𝑝𝑖⟩⟨𝑞𝑖|,  𝑏𝑖

𝑝𝑞 = 𝑒
―𝑖

𝜔𝑝𝑞
𝑖

𝑣 𝑧
.

 is the transition operator ,  represents modified Bessel functions of the second kind,  is the 𝑡𝑝𝑞
𝑖 |𝑝𝑖⟩⟨𝑞𝑖| 𝐾𝑚 𝜀0

vacuum permittivity, and . Notice that  is an energy translation operator for a paraxial 𝛾 =
1

1 ― 𝑣2/𝑐2 𝑏𝑝𝑞
𝑖

electron, corresponding to an energy translation of . ℏ𝜔𝑝𝑞
𝑖 = ℏ𝜔𝑝

𝑖 ―ℏ𝜔𝑞
𝑖

To sum up, Eq. (SI13) describes the interaction of the relativistic free electron with multiple 
emitters. In the derivation of Eq. (SI13) a few approximations have been done: 1) We assume that the 
electron is relativistic and the energy change of the electron due to the interaction is much smaller than 
initial energy. This assumption give rise to the “no-recoil” approximation; 2) We assume that all emitters 
do not interact with each other and can be treated as point particles, which leads to the dipole approximation 
for the emitters; 3) We assume that interaction between the emitters and free electron is weak enough that 
we can use only the first term in Magnus expansion.

Let us elaborate more on the assumption of non-interacting emitters. This assumption is correct 
when the energy of the interaction between neighboring emitters is much smaller than the energy of the 
interaction between the free electron and the emitters. According to Eq. (SI6), the maximum energy of the 

interaction between the free electron and the emitter is , while the energy of dipole-dipole 𝐻max
int =

𝑒𝛾 𝑑 ⊥

4𝜋𝜀0𝑟2
⊥

interaction between neighboring emitters can be estimated as   , where  is the distance 𝐻d ― d~
|𝒅|2

4𝜋𝜀0𝑎3 𝑎

between neighboring emitters. Thus, the assumption of non-interacting emitters holds true, when 𝐻max
int ≫

 which leads to:𝐻d ― d

𝑎 ≫ 𝑑𝑟2
⊥ /𝑒𝛾~5 nm.

The estimation was done for  and . 𝑑 = 𝑒 ⋅ 1 nm 𝑟 ⊥ = 10 nm

However, even with applied approximation the scattering matrix  lies in an enormous Hilbert 𝕊
space. To proceed with a tractable problem that still exhibits the ideas of our work, we consider the special 
case when all the emitters are two-level systems with the same energy separation , the same transition ℏ𝜔0
dipole, and are located at an approximately equal transverse distance from the electron trajectory compared 

to the wavelength of light (e.g., satisfy ). In this case, and  , |𝒓𝑖
⊥ ― 𝒓𝑗

⊥ | ≪
𝑐

2𝜋𝜔 𝑏𝑖 ≡ 𝑏 ≡ 𝑒
―

𝑖𝜔0
𝑣0

𝑧
𝒓𝒊

⊥ ≡ 𝒓 ⊥ 𝒅𝑖 ≡
 and the scattering matrix from Eq. (SI13) can be simplified to:𝒅

𝕊 = exp (𝑖(𝑔𝑆 + 𝑏 + 𝑔 ∗ 𝑆 ― 𝑏 † )),#(SI14)

with  and . The validity of the two-level model 𝑆 ± = ∑
𝑖𝜎

𝑖
± 𝑒 ∓

𝑖𝜔0𝑧𝑖
𝑣 𝑔 =

𝑒𝜔0

2𝜋𝛾𝜀0ℏ𝑣2
0
(𝑑 ⊥ 𝐾1(𝜔0𝑟 ⊥

𝛾𝑣0 ) +
𝑖
𝛾 𝑑𝑧𝐾0(𝜔0𝑟 ⊥

𝛾𝑣0 ))
is further discussed in the main text. This scattering matrix still resides in an enormous Hilbert space; 
however, we can split the space to sub-Hilbert spaces that are invariant under the operators  and under 𝑆 ±
the evolution by the scattering matrix. This invariance makes the electron interaction with ensembles of 
emitters a promising probe for investigating superradiating systems, because the superradiance dynamics 
is itself also restricted to such sub-Hilbert states. Notice that if all the emitters are confined in a small 
volume, s.t , this sub-Hilbert space just reduces to the Dicke states [5]. Δ𝒓𝑖 ≪

𝑐
𝜆



Section II – Estimations of the scattering matrix in the superradiant sub-Hilbert space

In this section, we consider the scattering matrix from Eq. (SI14) and investigate the limiting case 
in which it reduced to Eq. 6 of the main text. We define the superradiant sub-Hilbert space as the space 
spanned by the states . These states define the superradiant ladder, which is a  |𝑛⟩ =

1

(𝑁
𝑚)

𝑆𝑛
+ |𝑔𝑔…𝑔⟩ 𝑁 + 1

dimensional sub-Hilbert space where  is the number of emitters. The scattering matrix is closed in this 𝑁
sub-Hilbert space, allowing us to write a matrix element:

𝑠𝑛𝑚 = ⟨𝑛|𝕊|𝑚⟩ = 𝑏𝑛 ― 𝑚𝑒𝑖(𝑛 ― 𝑚)arg (𝑔)(cos |𝑔|)𝑁(𝑖tan |𝑔|)𝑛 ― 𝑚 ×

 𝑚!𝑛!(𝑁 ― 𝑛)!(𝑁 ― 𝑚)!
𝑚

∑
𝑘 = 0

( ―1)𝑘(tan |𝑔|)2𝑘

𝑘!(𝑚 ― 𝑘)!(𝑛 ― 𝑚 + 𝑘)!(𝑁 ― 𝑛 ― 𝑘)!.#(SI15)

Expanding to lowest non-zero order in , we get:|𝑔|

𝑠𝑛𝑚 ≈ 𝑏𝑛 ― 𝑚𝑒𝑖(𝑛 ― 𝑚)arg (𝑔)𝑖𝑛 ― 𝑚|𝑔|𝑛 ― 𝑚 ×

 𝑚!𝑛!(𝑁 ― 𝑛)!(𝑁 ― 𝑚)!
𝑚

∑
𝑘 = 0

( ―1)𝑘|𝑔|2𝑘

𝑘!(𝑚 ― 𝑘)!(𝑛 ― 𝑚 + 𝑘)!(𝑁 ― 𝑛 ― 𝑘)!.#

If we assume that  and additionaly that  1, meaning that the initial and 𝑁 ― 𝑚,𝑁 ― 𝑛 ≫ 1 𝑛,𝑚 ≫
final state are both far from the edges of the superradiant ladder, we can take the upper limit of the sum to 

infinity and use the Stirling’s approximation to evaluate the factorials, . Then, the matrix 𝑛! ∼ 2𝜋𝑛(𝑛
𝑒)𝑛

 

element  can be simplified further:𝑠𝑛𝑚

𝑠𝑛𝑚 ≈ 𝑏𝑛 ― 𝑚𝑒𝑖(𝑛 ― 𝑚)arg (𝑔)𝑖𝑛 ― 𝑚|𝑔|𝑛 ― 𝑚 ×

 𝑛 ⋅ 𝑚 ⋅ (𝑁 ― 𝑚) ⋅ (𝑁 ― 𝑛) ⋅ (𝑛𝑛𝑚𝑚(𝑁 ― 𝑚)(𝑁 ― 𝑚)(𝑁 ― 𝑛)𝑁 ― 𝑛

𝑒2𝑁 ) ×

∞

∑
𝑘 = 0

( ―1)𝑘|𝑔|2𝑘

𝑘!(𝑛 ― 𝑚 + 𝑘)! ⋅ (𝑚 ― 𝑘) ⋅ (𝑁 ― 𝑛 ― 𝑘) ⋅ ((𝑚 ― 𝑘)(𝑚 ― 𝑘)(𝑁 ― 𝑛 ― 𝑘)(𝑁 ― 𝑛 ― 𝑘)

𝑒𝑁 + 𝑚 ― 𝑛 ― 2𝑘 )
.

𝑠𝑛𝑚 ≈ 𝑏𝑛 ― 𝑚𝑒𝑖(𝑛 ― 𝑚)arg (𝑔)𝑖𝑛 ― 𝑚|𝑔|𝑛 ― 𝑚𝑒𝑛 ― 𝑚 ×

 𝑛𝑛𝑚𝑚(𝑁 ― 𝑚)(𝑁 ― 𝑚)(𝑁 ― 𝑛)𝑁 ― 𝑛 ×
∞

∑
𝑘 = 0

( ―1)𝑘|𝑔|2𝑘

𝑘!(𝑛 ― 𝑚 + 𝑘)! ⋅ (𝑚 ― 𝑘)(𝑚 ― 𝑘)(𝑁 ― 𝑛 ― 𝑘)(𝑁 ― 𝑛 ― 𝑘)𝑒 ―2𝑘.

𝑠𝑛𝑚 ≈ 𝑏𝑛 ― 𝑚𝑒𝑖(𝑛 ― 𝑚)arg (𝑔)𝑖𝑛 ― 𝑚|𝑔|𝑛 ― 𝑚𝑒𝑛 ― 𝑚 ×

𝑛𝑛(𝑁 ― 𝑚)(𝑁 ― 𝑚)

𝑚𝑚(𝑁 ― 𝑛)𝑁 ― 𝑛 ×
∞

∑
𝑘 = 0

( ―1)𝑘|𝑔|2𝑘𝑚𝑘(𝑁 ― 𝑛)𝑘𝑒2𝑘

𝑘!(𝑛 ― 𝑚 + 𝑘)! .

Additionally, assuming that  and  are close enough compared to the size of the ladder (i.e., 𝑛 𝑚 |𝑛 ― 𝑚| ≪ 𝑁
), and defining  , , we get:𝛽 ≡ 𝑁 ― 𝑚|𝑔| ≈ 𝑁 ― 𝑛|𝑔| 𝑙 ≡ 𝑛 ― 𝑚

𝑠𝑛𝑚 ≈ 𝑏𝑛 ― 𝑚𝑒𝑖(𝑛 ― 𝑚)arg (𝑔)𝑖𝑛 ― 𝑚( 𝑚𝛽𝑒)𝑙
∞

∑
𝑘 = 0

( ―1)𝑘(𝛽𝑒)2𝑘𝑚𝑘

𝑘!(𝑙 + 𝑘)! .



This sum can be expressed analytically as a Bessel function of the first kind:

𝑠𝑛𝑚 ≈ 𝑏𝑛 ― 𝑚𝑒𝑖(𝑛 ― 𝑚)arg (𝑔)𝑖𝑛 ― 𝑚𝐽𝑙(2 𝑁𝑚 ― 𝑚2|𝑔|),#(SI16)

which is exactly the scattering matrix that describes free electron Rabbi oscillations [6] with |𝑔eff| =
. This result can be understood intuitively from the fact that a  level ladder looks like 𝑁𝑚 ― 𝑚2|𝑔| 𝑁 + 1

a harmonic oscillator when far from the edges. If we assume that the emitters occupy only levels 
surrounding the level  on the superradiant ladder, such that , then all the 𝑚 𝑚 ≫ 1, 𝑁 ― 𝑚 ≫ 1,|𝑛 ― 𝑚| ≪ 𝑁
non-zero elements of the operator  will be roughly proportional to , and the scattering matrix 𝑆 + 𝑁𝑚 ― 𝑚2

for the electron will look like:

𝕊 = 𝑒𝑖 𝑁𝑚 ― 𝑚2(𝑔𝑏 + 𝑔 ∗ 𝑏 † ).#(SI17)

This is exactly the free electron Rabbi oscillations scattering matrix. If we excite the emitters using 
coherent-control pulses, and the duration of our laser corresponds to  radians of the Rabbi cycle, the 𝜙
emitters will be distributed around , and so we can approximate the effective coupling in 𝑚 = sin2 (𝜙

2) ⋅ 𝑁

this case as:

𝑔eff =
sin (𝜙)

2 𝑁𝑔.#(SI18)

While this system behaves like free electron Rabbi oscillations, it is interesting to note that when 
we do not assume , the systems behave fundamentally different regardless of the size of the ladder. |𝑔| ≪ 1
To see that, we can write the original scattering matrix from Eq. (SI4) in a different equivalent form:

𝑆 = ∏
𝑖

[cos (|𝑔|) ― 𝑖sin (|𝑔|)(𝑒
𝑖 ⋅ arg (𝑔) ―

𝑖𝜔0𝑧𝑖

𝑣 𝜎𝑖
+ 𝑏 + 𝑒

―𝑖 ⋅ arg (𝑔) +
𝑖𝜔0𝑧𝑖

𝑣 𝜎𝑖
― 𝑏 + )].#(SI19)

In this case, we can see that the scattering matrix behaves fundamentally different for high values of . |𝑔|
Two important examples are :|𝑔| =

𝜋
2,𝜋

𝑆
|𝑔| =

𝜋
2

= ∏
𝑖

[ ―𝑖(𝑒
𝑖 ⋅ arg (𝑔) ―

𝑖𝜔0𝑧𝑖

𝑣 𝜎𝑖
+ 𝑏 + 𝑒

―𝑖 ⋅ arg (𝑔) +
𝑖𝜔0𝑧𝑖

𝑣 𝜎𝑖
― 𝑏 + )],

𝑆|𝑔| = 𝜋 = 𝐼.#(SI20)

For the case of , the matrix representation in the superradiant sub-Hilbert space contains only |𝑔| =
𝜋
2

elements on the secondary diagonals. Meaning that the state  can only transition to the state  |𝑚⟩ |𝑁 ― 𝑚⟩
(similar to the application of a  pulse in coherent control). This corresponds to a free electron changing 𝜋
the state of every two-level system. Similarly, the case of  corresponds to a free electron that does |𝑔| = 𝜋
not change any two-level system at all, or more precisely, the electron induces exactly one Rabbi cycle on 
each two-level system. These kinds of effects have no correspondence in the analogy of harmonic oscillator 
and represent a fundamental difference between the systems even in the limit of  emitters.𝑁 ≫ 1

Section III – Interaction dependence on disorder and interaction length.

This section discusses the results of Section 3 of the main text and presents further analysis of their 
resilience to disorder in position, dipole strength, and energy of the emitters. In Eq. 10 of the main text, we 
presented the average dipole moment as seen by moving electron, when all the dipole moments of the 
emitters are taken to be of the same size. If we allow the different sizes of dipole moments for different 
emitters, the equation can be re-written as: 



|⟨𝑑(𝜃)⟩|2 = |∑
𝑖

𝒅𝑖𝑒
𝑖𝜔0𝑧𝑖(𝑛cos 𝜃

𝑐 ―
1
𝑣)|

2

.#(SI21)

From this equation, it is apparent that when the Cherenkov condition is satisfied , the (𝑛cos 𝜃
𝑐 ―

1
𝑣 = 0)

equation reduces to  independently on their position. Thus, the Cherenkov resonance is robust to |∑𝒅𝑖|2

disorder in the emitters’ positions. 

If the emitters are of varying dipole strength or direction, the equation can be reduced to  𝑁2|𝑑avg|2,
and so the superradiant enhancement is still apparent with the replacement of the dipole of the (𝑁2) 
individual emitter with the average dipole. Only in the case when the average dipole moment is zero (i.e., 

) the Cherenkov resonance disappears. However, in typical systems of emitters such as quantum |∑𝒅𝑖|2 = 0
dots grown on a substrate, or emitter ensembles forming superlattices, there is often a shared orientation of 
the dipole moment (or an approximated one) for all the emitters. 

If additionally, we assume that the emitters are in periodic positions with distance , the Δ𝑧
superradiant enhancement can be achieved for additional angles. By plugging this case into SI21, we can 
obtain the generalized hybrid Cherenkov-Smith-Purcell condition presented in Eq. 11 of the main text. 

Notice that the angular dependence in SI21 is multiplied in this case by , where  is the 
Δ𝑧𝜔0𝑛

𝑐 =
2𝜋Δ𝑧𝑛

𝜆 𝜆
emitters’ radiation wavelength in free space. We can conclude that positional variations on the order of Δ

 does not change the superradiant enhancement significantly. For NIR emitters, this is a fairly simple 𝑧 ≪ 𝜆
requirement for modern fabrication abilities. 

In Fig. 1, we present the EELS and observed dipole of the scattering of the free electron by 10 
emitters in periodic positions in 4 exemplary cases (the parameters of the emitters are taken to be the same 
as these in Fig. 2 of the main text): (1, Fig.1a) Emitters are spaced by , more than their radiation 1 μm
wavelength  s.t. Smith-Purcell peaks can be observed. (2, Fig.1b) Emitters are spaced by , (800 nm) 1μm
more than their radiation wavelength s.t. the Smith-Purcell peak can be observed. We further introduce 
Gaussian noise of  (smaller then but not negligible compared to the wavelength) on their position, 150 nm
showing that while some of the features of the Smith-Purcell peak can be observed, it is generally smeared 
out. (3, Fig.1c) Emitters are spaced by , smaller but comparable to their radiation wavelength. In 300 nm
this case, the Smith-Purcell peak cannot be observed, and the Cherenkov resonance is broadened. (3, Fig.1d) 
Emitters are spaced by , much smaller than their radiation wavelength. In this case, the Smith-Purcell 20 nm
peak cannot be observed and the Cherenkov resonance is completely broadened over the entire interaction 
as all the emitters are located within a single wavelength. 



Fig. S1. Free-electron interaction with emitters of different spacings. (a) EELS as a function of 
excitation angle by a  pulse. (b) The observed dipole from the perspective of the electron according to 𝜋/2
SI21.

Fig. S1 shows that the Cherenkov resonance is smeared over the entire scale of excitation angles 
when the spacing between emitters is much smaller than the emitters’ radiation wavelength. However, the 
width of the Cherenkov resonance depends on the interaction length, which can be many times the radiation 
wavelength in state-of-the-art grazing angle experiments [7]. In such experiments, the electron can interact 
with thousands of emitters. We cannot perform a full quantum mechanical calculation for such a situation 
because the Hilbert-space is enormous, but we can evaluate the observed dipole by using SI21 to analyze 
the structure of the Cherenkov resonance. If we assume uniform spacing  between  emitters, the sum Δ𝑧 𝑁
can be evaluated as:

|⟨𝑑(𝜃)⟩|2 = 𝑑2
0|∑

𝑘
𝑒

𝑖𝜔0Δ𝑧 ⋅ 𝑘 ⋅ (𝑛cos 𝜃
𝑐 ―

1
𝑣)|

2

= 𝑑2
0|𝑒𝑖𝑁𝜔0Δ𝑧(𝑛cos 𝜃

𝑐 ―
1
𝑣)

― 1

𝑒
𝑖𝜔0Δ𝑧(𝑛cos 𝜃

𝑐 ―
1
𝑣)

― 1
|
2

.#(SI22)

We denote . When the Cherenkov condition is satisfied, we have  and 𝜔0Δ𝑧(𝑛cos 𝜃
𝑐 ―

1
𝑣) = 𝑋(𝜃) 𝑋(𝜃) = 0

. We expand the expression from small values around that and get:|⟨𝑑(𝜃)⟩|2 → 𝑁2𝑑2
0

|⟨𝑑(𝜃)⟩|2 ≈ 𝑑2
0|sin (𝑁𝑋(𝜃)

2 )
𝑋(𝜃)

2
|
2

.#(SI23)

The  function implies that we should expect the width of the resonance (in terms of ) to scale as sinc 𝑋(𝜃)
, and hence the resonance width should scale as , where  is the entire interaction length , and  1/𝑁

𝜆
𝐿 𝐿 𝑁Δ𝑧 𝜆

is the emitters’ radiation wavelength . ∝
𝑐

𝜔0

In Fig. 2, we show the scaling law of the width of the resonance using a simple single-parameter 
fit, showing the calculation of full-width-half-max (FWHM) of the Cherenkov resonance for varying total 
interaction length.

Fig. 1. The scaling law of the Cherenkov resonance FWHM, plotted for emitters with fixed spacings 
and varying total interaction length, as calculated from SI22. The fitted curve has the form , 𝑎 ⋅ 𝜆/𝐿



demonstrating the general scaling law. For the calculation, we chose , , , 𝑛 = 1.5 𝜆 = 800 nm Δ𝑧 = 10 nm
and .𝑁 ≡ 𝐿/Δ𝑧

The last point to discuss in this section is how disorder in energy can influence the effect. Disorder 
in the emitters and inter-emitter interactions typically results in broadening of their energy distribution. 
This effect is captured inside the effective decoherence time of the emitters . If the emitters are initially 𝑇 ∗

2

excited to be in the same phase,  will result in them losing their phase relation due to the dipoles rotating 𝑇 ∗
2

with different rates. Once the relative phase is lost, the analysis in the manuscript becomes invalid. To 
quantify this limit on our predictions, we consider how many emitters a single electron can interact with in 
time shorter than . In such a short time, the energy disorder of the emitters can be neglected, and the 𝑇 ∗

2

analysis performed in this manuscript is valid. For a given , the number of emitters effectively interacting 𝑇 ∗
2

coherently with the electron is approximately , where  is the velocity of the free electron and  is the 
𝑣𝑇 ∗

2

Δ𝑧 𝑣 Δ𝑧
spacing between emitters. In modern quantum dot systems, advanced fabrication techniques allow for the 
observation of  on the ps scale even in room temperature [8]. Then, for , if we consider 𝑇 ∗

2 𝑇 ∗
2 = 1 ps

 electrons (velocity of ), as is typical inside an ultrafast transmission electron microscope, we 200 keV 0.7𝑐
get that up to  emitters can interact coherently with each electron over , for emitter spacing 1,000 200 um
of .200 nm

Section IV – Reconstruction of the superradiant dynamics.

This section discusses Fig. 4 of the main text. We consider an initial state containing the emitters 
in a general state (inside the superradiant sub-Hilbert space) and an electron with initial energy . The 𝐸0

joint electron-emitters wavefunction is . Then the final state is given by:|Ψi⟩ = ∑
𝑚𝑐𝑚|𝑚⟩ ⊗ |𝐸0⟩

|Ψf⟩ = 𝑆|Ψi⟩,

|Ψf⟩ = ∑
𝑚

𝑐𝑚∑
𝑘

(cos |𝑔|)𝑁(𝑖tan |𝑔|)𝑘 𝑚!(𝑘 + 𝑚)!(𝑁 ― 𝑘 ― 𝑚)!(𝑁 ― 𝑚)! ×

𝑚

∑
𝑙 = 0

( ―1)𝑙(tan |𝑔|)2𝑙

𝑙!(𝑚 ― 𝑙)!(𝑘 + 𝑙)!(𝑁 ― 𝑘 ― 𝑚 ― 𝑙)!|𝑘 + 𝑚⟩ ⊗ |𝐸0 ― 𝑘 ⋅ ℏ𝜔0⟩.#(SI21)

The probability to measure the electron with energy  is then given by:𝐸0 ―𝑘 ⋅ ℏ𝜔0

𝑃 ―𝑘 = ∑
𝑚

𝑑𝑘𝑚𝑝𝑚,

𝑑𝑘𝑚 = (cos2 |𝑔|)𝑁(tan2 |𝑔|)𝑘𝑚!(𝑘 + 𝑚)!(𝑁 ― 𝑘 ― 𝑚)!(𝑁 ― 𝑚)! ×

| 𝑚

∑
𝑙 = 0

( ―1)𝑙(tan |𝑔|)2𝑙

𝑙!(𝑚 ― 𝑙)!(𝑘 + 𝑙)!(𝑁 ― 𝑘 ― 𝑚 ― 𝑙)!|
2

,#(SI22)

where  𝑝𝑚 = |𝑐𝑚|2.

To generate Fig. 4, we need to evaluate  numerically for some specific parameters and provide 𝑑𝑘𝑚
from some theory the statistics  as a function of time for the superradiating sample. In the case of Dicke 𝑝𝑚
superradiance [5], where all the emitters are located in a small volume, the statistics can be calculated 
numerically using closed-form differential equations provided by Bonifacio et al. [9]. However, for the 
long sample superradiance (Fig. 4b in the main text), no such equations are known. Thus, we use the 
Truncated-Wigner approximation (TWA) 10], where we evaluate the classical (or mean-field) equations of 
motion provided by Bonifacio et al. [11] for an ensemble of initial conditions. The TWA can provide an 
approximation for the moments of the probability distribution , and from that we find the distribution 𝑝𝑚
using linear least square optimization. 
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