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S1.  Error analysis for shaping electron wavepackets with light  

In order to show the stability of the laser-driven electron wavepacket shaping, and of the 

shaper pulse found through our optimization algorithm, we present an error analysis for the 

case of shaping electron energy shift (Fig.2 of the main text). In Fig.S1 we focus on a specific 

choice of an energy shift from Fig.2 of the main text, and plot the electron spectra obtained 

from interacting with the optimal shaper pulse under the influence of random noise. We 

conclude that it is possible to achieve a stable electron energy shift even when using laser fields 

that deviate from the set of optimized values. 

  

Figure S1: Robustness to errors in electron temporal shaping. (a) Electron energy spectrum after the 
interaction with random laser fields close to optimized values. The initial wavefunction is colored in gray. We use 
21 laser harmonics to achieve a target energy shift of 5  . (b) The noisy amplitudes of the shaper harmonics, 

corresponding to the plots in (a). The plot is constructed from 150 random realizations with a uniform random 

noise varying the amplitude   by 5%  and the phase  arg   by 0.05 rad. 

 

S2. Theory of quantum electron interaction with arbitrary (continuous) laser spectra 

Our analytical theory involves solving a Schrödinger equation for the free electron in the 

presence of a strong EM field that we consider as a classical time dependent potential. The 

Schrödinger equation is solved in the paraxial regime with corrections accounting for the 

relativistic nature of the electron. Here, we present the derivation of PINEM for the most 

general case of a field with an arbitrary spectrum ( )E 


 at some frequency range. In this case 

the interaction Hamiltonian can be written as 
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We apply an ansatz, writing the wavefunction of the electron during the interaction as 
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 , and after applying the PINEM approximations68 we find the 

equation for   to be: 
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which can be decomposed into its spectrum  ,f r


 defined by 
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with S  an envelope function, representing the coherent profile of the initial electron pulse, e.g, 

a Gaussian. 

Solving for  ,f r


, under the assumption that  ˆS r vtz


 is very wide, we can understand 

 
2

,f r


 as the frequency-dependence of the coherent part of the electron probability density 

(per unit frequency) to having its energy in the range  , d   . We note that it is possible 

to integrate equation (S3) To get the explicit full electron wavefunction 
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We thus prove the generalization of the discrete case, showing that any laser interaction 

only changes the phase of the wavefunction. The resulting conservation laws for the continuous 

case are discussed in the main text. 

S3. Shaping attosecond electron combs: the role of the wavepacket’s drift 

We have shown in the main text that a drift of an electron wavepacket after a PINEM 

interaction can result in temporal pulse shapes as well as in Talbot-effect patterns (generalizing 
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the results by the Ropers group57). Here we compare the resulting electron comb created by an 

optimized multi-harmonic laser pulse, with an electron comb created by a single frequency 

laser. In Fig.S2 we show the space-time drift of the two wavefunctions. Interestingly, in these 

plots we can see both a macro-comb of oscillations (Fig.2a,b) and inside it, a micro-comb 

(Fig.2c,d). We observe that each micro-comb starts with a single cycle pulse, whereas by the 

multi-harmonic shaping process we have this pulse appearing sooner (tens of microns instead 

of millimeters). Comparing the two cases, we notice that the shaping also makes the micro-

comb gain a tilt and results in much narrower pulses. In Fig.S3, we present the optimal 

femtosecond laser pulses that were used to create the electron combs for both the single laser 

harmonic and multiple laser harmonics shown in Fig.S2. 

   
Figure S2: Wavepacket drift in the process of shaping attosecond electron combs. In all panels, we plot the 
space-time propagation of the wavepacket after the interaction. (a,b) Electron spatio-temporal profile resulting 
from a single frequency laser and an optimized laser with multiple harmonics, respectively. (c,d) Zoom-in on the 
micro-comb of each case in (a,b). The two horizontal axes on the top and bottom of these panels present the 
distance of propagation L  of the pulse in parallel with the propagation time t . The two vertical axes on the right 

and left sides of these panels present the time p
t  in the moving frame of reference in parallel with the spatial 

coordinate z  in the frame moving with the electron velocity v . 
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Figure S3: Temporal laser pulses for shaping attosecond electron combs. (orange) Optimal femtosecond laser 
pulses found by our optimization algorithm to create an electron comb, determining the initial condition ( 0t  ) 
wavefunctions in Fig.S2. (blue) Comparison with the temporal laser profile of a single laser harmonic. In both 
cases, the real part of the electric field is plotted to represent each laser pulse. 

 

S4.  Discussion of experimental realizations 

The results of our paper are general for any electron-laser interaction. The geometry of the 

problem and the specific laser fields can always be captured by the   parameters. Nevertheless, 

we discuss one specific experimental realization that could implement the interaction we study, 

as illustrated in Fig.1 of the main text – a mirror reflecting the laser while being thin enough to 

remain transparent for the electrons (generalizing the paper by the Carbone group53). 

For simplicity, we approximate the laser to be a plain wave (the electron spot size is much 

smaller than the laser spot size in current experiments). The electric field distribution along the 

z  axis after reflection by a mirror with an angle  , has the following profile: 
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Equation (S5) neglects the contribution from the part of the field that penetrates the mirror 

(which was shown to be a good approximation53). For each laser harmonic j , we can calculate 

the PINEM field according to equation (3) of the main text, resulting in 
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One direct consequence of equation (S6) is that as the harmonic increases, the electric field 

become narrower in z , and also decays more quickly. Therefore, the PINEM field decreases 

for larger harmonics. 

We can generalize the plane wave treatment to a Gaussian laser beam analysis, and here 

show the scaling of the field amplitude and spatial pulse width along the z axis, being 
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with 0w  being a parameter that captures the laser parameters and incident angle.  

In Fig.5 of the main text, we show the evolution of the electron energy spectrum along its 

propagation, along the interaction with the laser. Here we specify the realistic parameters that 

we used to show these results. As we presented in Fig.1 of the main text, we direct a laser beam 

at an angle   onto a mirror in order to break the uniformity of space and create a component 

of the electric field in the direction of the electron. Typical angles that are common in current 

UEM experiments include (1) laser nearly parallel to the electrons (e.g., 5   53), for which 

we obtain short interaction lengths and high powers; (2) another accessible interaction angle 

has the laser nearly perpendicular to the electron (e.g., 85   ), which allows for long 
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interaction lengths but at the cost of reduced power. A typical laser waist width that matches 

our figure is 50 µm. These values can be easily scaled to fit all shaping scenarios we describe 

in the main text. To assess the feasibility of performing experiments with our techniques, we 

evaluate the required pulse energy to be around several nano-Joules. For example, in the case 

of shaping an electron comb, the required   parameters correspond to a pulse of 100 fs duration 

that holds an energy of ~15 nJ. 


