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S1. Electric field autocorrelations for spontaneous emission by free electrons 

In this section we show that the field-field quantum optical correlations of light 

⟨𝐄†(𝐫′, 𝜔′)𝐄(𝐫,𝜔)⟩ emitted by free electrons, are related to the current-current quantum 

correlations of the electrons, ⟨𝐣†(𝐫′, 𝜔′)𝐣(𝐫, 𝜔)⟩
el

, through a simple relation involving the 

dyadic Green's function of the medium, 𝐆(𝐫, 𝐫′, 𝜔), as follows: 

⟨𝐄†(𝐫′, 𝜔′)𝐄(𝐫,𝜔)⟩ = 𝜇0
2𝜔𝜔′∫𝑑3𝐑′ 𝐆†(𝐫′, 𝐑′, 𝜔′)∫𝑑3𝐑𝐆(𝐫, 𝐑, 𝜔)⟨𝐣†(𝐑′, 𝜔′)𝐣(𝐑, 𝜔)⟩

el
 

which we employ for analyzing the results of our paper. We shall derive this relation using 

quantum electrodynamics and perturbation theory, which is more commonly used in the 

literature for describing these processes. 

First, we consider a system of a Dirac electron and radiation field with an initial density 

operator 

𝛒𝑖 =∑𝜌el(𝐢, 𝐢
′)|𝐢0⟩⟨𝐢′0|

𝐢,𝐢′

, (S1.1) 

where 𝐢 = (𝐤𝑖 , 𝑠𝑖) are pure spinor states with wavefunctions 

𝛙𝐢 = ⟨𝐫|𝐢⟩ =
1

√(2𝜋)3
𝐮𝑠𝑖(𝐤𝑖)𝑒

𝑖𝐤𝑖⋅𝐫−𝑖
𝐸𝑖
ℏ 𝑡 , (S1.2) 

where 𝐸𝑖 = √ℏ2𝑘2𝑐2 +𝑚2𝑐4 is the initial electron energy and 𝐮𝑠𝑖(𝐤𝑖) denotes the Dirac 

particle spinor. The state |0⟩ denotes the vacuum of the electromagnetic (EM) field, which is 

quantized in a weakly dispersive, homogeneous medium as 

𝐀(𝐫, 𝑡) =∑√
ℏ𝑣𝑔𝐪𝜎

2𝜔𝐪𝜎𝜖0𝑛𝐪𝜎𝑐
𝓾𝐪𝜎(𝐫)𝑒

−𝑖𝜔𝐪𝜎𝑡𝑎𝐪𝜎 + ℎ. 𝑐.

𝐪𝜎

, (S1.3) 

with the 𝓾𝐪𝜎(𝐫) denoting the EM modes of the Maxwell equations. After the interaction, the 

total density operator to first order in QED (post-selected to include only emission events via 

the projection operator 𝑃 = 1 − ∑ |𝐟0⟩⟨𝐟0|𝐟 ) is 
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𝛒𝑓 =∑𝜌el(𝐢, 𝐢
′)∑𝑀𝐟𝐢;𝐪𝜎
𝐟;𝐪𝜎

∑ 𝑀𝐟′𝐢′;𝐪′𝜎′
∗

𝐟′;𝐪′𝜎′

|𝐟1𝐪𝜎⟩⟨𝐟
′1𝐪′𝜎′|

𝐢,𝐢′

, (S1.4) 

where 𝑀𝐟𝐢;𝐪𝜎 =
𝑖

ℏ
𝑒𝑐 ∫𝑑𝜏Θ(𝑡 − 𝜏) ⟨𝐟; 1𝐪𝜎|𝛂 ⋅ 𝐀|𝐢; 0⟩ is the transition matrix element, and Θ(𝑡) 

denotes the Heaviside step function. Explicitly the transition matrix element is given by 

𝑀𝐟𝐢;𝐪𝜎 =
𝑖

ℏ
√

ℏ𝑣𝑔𝐪𝜎
2𝜔𝐪𝜎𝜖0𝑛𝐪𝜎𝑐

∫𝑑3𝐫𝓾𝐪𝜎
∗ (𝐫) ⋅ ∫𝑑𝜏Θ(𝑡 − 𝜏)[𝑒𝑐𝛙𝐟

†(𝐫, 𝜏)𝛂𝛙𝐢(𝐫, 𝜏)]𝑒
𝑖𝜔𝐪𝜎𝜏 , (S1.5) 

The expression in the square brackets can be identified as the matrix element of the 3-current 

operator in first quantization: 

𝐣(𝐫) = 𝑒𝐧(𝐫)𝐯 = 𝑒𝛿(𝐫 − �̂�)𝑐𝛂, (S1.6) 

note that in relativistic quantum mechanics, S1.6 is a Hermitian operator since [�̂�, 𝛂] = 0 

making 𝐯 = 𝑐𝛂. With this definition we find that 

⟨𝐟|𝐣|𝐢⟩ = ⟨𝐟(𝑡)|𝐣(𝐫)|𝐢(𝑡)⟩ = 𝑒𝑐⟨𝐟(𝑡)|𝛿(𝐫 − �̂�)𝛂|𝐢(𝑡)⟩

= 𝑒𝑐 ∫𝑑3𝐫′⟨𝐟(𝑡)|𝛿(𝐫 − �̂�)|𝐫′⟩⟨𝐫′|𝛂|𝐢(𝑡)⟩

= 𝑒𝑐 ∫𝑑3𝐫′𝛿(𝐫 − 𝐫′)⟨𝐟(𝑡)|𝐫′⟩⟨𝐫′|𝛂|𝐢(𝑡)⟩ = 𝑒𝑐⟨𝐟(𝑡)|𝐫⟩⟨𝐫|𝛂|𝐢(𝑡)⟩

= 𝑒𝑐𝛙𝐟
†(𝐫, 𝑡)𝛂𝛙𝐢(𝐫, 𝑡), (S1.7) 

In the non-relativistic case, we can formally split the current operator into positive and 
negative frequency parts 

𝐣(𝐫) = 𝐣(+)(𝐫) + 𝐣(−)(𝐫), (S1.8𝑎) 
where 

𝐣(+)(𝐫) =
𝑒

2𝑚
𝛿(𝐫 − �̂�)𝐩 = 𝐣(−)†(𝐫), (S1.8𝑏) 

The same ideas apply for replacing the Hermitian 𝐣(𝐫) with 2𝐣(+)(𝐫), since in that case  

⟨𝐟|2𝐣(+)(𝐫)|𝐢⟩ = 𝑒𝜓𝑓
∗(𝐫, 𝑡)

ℏ𝐤𝑖
𝑚
𝜓𝑖(𝐫, 𝑡), (S1.8𝑐) 

the reason being that we consider only positive frequencies in the emission process. Since 

in emission processes 𝐸𝑓 < 𝐸𝑖  it follows that the products 𝜓𝑓
∗(𝐫, 𝑡)𝜓𝑖(𝐫, 𝑡) ∝ 𝑒

−𝑖(𝐸𝑖−𝐸𝑓)𝑡/ℏ 

contain only positive frequencies.  

And thus, writing 𝐣fi(𝐫, 𝑡) = ⟨𝐟|𝐣|𝐢⟩ 

𝑀𝐟𝐢;𝐪𝜎 =
𝑖

ℏ
√

ℏ𝑣𝑔𝐪𝜎

2𝜔𝐪𝜎𝜖0𝑛𝐪𝜎𝑐
∫𝑑3𝐫𝓾𝐪𝜎

∗ (𝐫) ⋅ ∫𝑑𝜏Θ(𝑡 − 𝜏)𝐣fi(𝐫, 𝜏)𝑒
𝑖𝜔𝐪𝜎𝜏 , (S1.9) 

When we detect only the photon component of the state, the electron's degrees of freedom 

are traced out, and the photon is described by a reduced density operator 

𝛒ph = Trel{𝛒𝑓} = ∑∑∑∑𝜌el(𝐢; 𝐢
′)𝑀𝐟𝐢;𝐪𝜎𝑀𝐟𝐢′;𝐪′𝜎′

∗

𝐢,𝐢′𝐟

|1𝐪𝜎⟩⟨1𝐪′𝜎′|

𝐪′𝜎′𝐪𝜎

, (S1.10) 

The positive frequency part of the electromagnetic field operator is 

𝐄(+)(𝐫, 𝑡) = 𝑖∑√
ℏ𝜔𝐪𝜎𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
𝓾𝐪𝜎(𝐫)𝑒

−𝑖𝜔𝐪𝜎𝑡𝑎𝐪𝜎
𝐪𝜎

, (S1.11) 
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The field-field correlations are then 

⟨𝐄(−)(𝐫′, 𝑡′)𝐄(+)(𝐫, 𝑡)⟩ = Tr{𝛒ph𝐄
(−)(𝐫′, 𝑡′)𝐄(+)(𝐫, 𝑡)}

=∑∑𝜌el(𝐢; 𝐢
′)∑∑𝑀𝐟𝐢;𝐪𝜎(𝑡)𝑀𝐟𝐢′;𝐪′𝜎′

∗ (𝑡′)

𝐪′𝜎′

⟨1𝐪′𝜎′|𝐄
(−)(𝐫′, 𝑡′)𝐄(+)(𝐫, 𝑡)|1𝐪𝜎⟩

𝐪𝜎𝐢,𝐢′𝐟

=∑∑𝜌el(𝐢; 𝐢
′)∑∑𝑀𝐟𝐢;𝐪𝜎(𝑡)𝑀𝐟𝐢′;𝐪′𝜎′

∗

𝐪′𝜎′

(𝑡′)√
ℏ𝜔𝐪𝜎𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
√
ℏ𝜔𝐪′𝜎′𝑣𝑔𝐪′𝜎′

2𝜖0𝑛𝐪′𝜎′𝑐
𝓾𝐪′𝜎′
∗ (𝐫′)𝑒

𝑖𝜔𝐪′𝜎′𝑡
′

𝓾𝐪𝜎(𝐫)𝑒
−𝑖𝜔𝐪𝜎𝑡

𝐪𝜎𝐢,𝐢′𝐟

,

(S1.12) 

Substituting the expressions for 𝑀𝐟𝐢;𝐪𝜎(𝑡) and employing index notation: 

⟨𝐸𝛼
(−)(𝐫′, 𝑡′)𝐸𝛽

(+)(𝐫, 𝑡)⟩

=∑∑𝜌el(𝐢; 𝐢
′)

𝐢,𝐢′𝐟

× ∫𝑑3𝐑′∫𝑑𝜏′ [Θ(𝑡′ − 𝜏′)∑
𝑣𝑔𝐪′𝜎′

2𝜖0𝑛𝐪′𝜎′𝑐
𝐪′𝜎′

𝓊𝐪′𝜎′,𝛼
∗ (𝐫′)𝓊𝐪′σ′,𝛾(𝐑

′)𝑒
𝑖𝜔𝐪′𝜎′(𝑡

′−𝜏′)
] 𝑗fi′,𝛾
∗ (𝐑′, 𝜏′)

× ∫𝑑3𝐑∫𝑑𝜏 [Θ(𝑡 − 𝜏)∑
𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑)𝑒−𝑖𝜔𝐪𝜎(𝑡−𝜏)] 𝑗fi,𝛿(𝐑, 𝜏) , (S1.13) 

Note that the Fourier transform of the square brackets is 

∫𝑑𝑡𝑒𝑖𝜔𝑡 Θ(𝑡)∑
𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑)𝑒−𝑖(𝜔𝐪𝜎−𝑖0

+)𝑡

= 𝑖∑
𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑)

𝜔 − 𝜔𝐪𝜎 + 𝑖0+
, (S1.14) 

and that the dyadic Green tensor is 

𝐺𝛽𝛿(𝐫, 𝐑,𝜔) =∑
𝑐𝑣𝑔𝐪𝜎

𝑛𝐪𝜎
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑)

𝜔𝐪𝜎
2 − 𝜔2

= −∑
𝑐𝑣𝑔𝐪𝜎

2𝜔𝐪𝜎𝑛𝐪𝜎
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑) [

1

𝜔 −𝜔𝐪𝜎 + 𝑖0+
−

1

𝜔 + 𝜔𝐪𝜎 + 𝑖0+
]

= −
1

𝜇0𝜔
∑

𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑)

𝜔 −𝜔𝐪𝜎 + 𝑖0
+

−
1

𝜇0𝜔
∑

𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑)

𝜔 + 𝜔𝐪𝜎 + 𝑖0
+ , (S1.15) 

Therefore Eq. (S1.14) can be simplified to  

𝑖∑
𝑣𝑔𝐪𝜎

2𝜖0𝑛𝐪𝜎𝑐
𝐪𝜎

𝓊𝐪𝜎,𝛽(𝐫)𝓊𝐪𝜎,𝛿
∗ (𝐑)

𝜔 − 𝜔𝐪𝜎 + 𝑖0+
= −𝑖Θ(𝜔)𝜇0𝜔𝐺𝛽𝛿(𝐫, 𝐑,𝜔), (S1.16) 

i.e., the positive frequency part of the Green tensor. Now define the frequency field in the 

following manner: 

𝐄(+)(𝐫, 𝑡) = ∫ 𝑑𝜔𝑒−𝑖𝜔𝑡𝐄(𝐫,𝜔)
∞

0

, (S1.17𝑎) 
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𝐄(−)(𝐫, 𝑡) = ∫ 𝑑𝜔𝑒𝑖𝜔𝑡𝐄†(𝐫, 𝜔)
∞

0

, (S1.17𝑏) 

Identifying Eq. (S1.13) as a convolution and moving to the frequency domain one has 

⟨𝐸𝛼
†(𝐫′, 𝜔′)𝐸𝛽(𝐫, 𝜔)⟩

= 𝜇0
2𝜔𝜔′∫𝑑3𝐑′ 𝐺𝛼𝛾

∗ (𝐫′, 𝐑′, 𝜔′)∫𝑑3𝐑𝐺𝛽𝛿(𝐫, 𝐑,𝜔)

×∑∑𝜌el(𝐢; 𝐢
′)𝑗fi′,𝛾

∗ (𝐑′, 𝜔′)𝑗fi,𝛿(𝐑,𝜔)

𝐢,𝐢′𝐟

, (S1.18) 

The double-sum expression in the above equation can be simplified further, because 

∑∑𝜌el(𝐢; 𝐢
′)𝐣fi′
∗ (𝐑′, 𝜔′)𝐣fi(𝐑,𝜔)

𝐢,𝐢′𝐟

=∑∑𝜌el(𝐢; 𝐢
′)⟨𝐢′|𝐣†(𝐑′, 𝜔′)|𝐟⟩⟨𝐟|𝐣(𝐑, 𝜔)|𝐢⟩

𝐢,𝐢′𝐟

=∑𝜌el(𝐢; 𝐢
′)⟨𝐢′|𝐣†(𝐑′, 𝜔′)𝐣(𝐑,𝜔)|𝐢⟩

𝐢,𝐢′

= Tr{𝜌el𝐣
†(𝐑′, 𝜔′)𝐣(𝐑, 𝜔)}

= ⟨𝐣†(𝐑′, 𝜔′)𝐣(𝐑,𝜔)⟩
el

 

Hence we arrive at the key result 

⟨𝐄†(𝐫′, 𝜔′)𝐄(𝐫, 𝜔)⟩ = 𝜇0
2𝜔𝜔′∫𝑑3𝐑′𝐆†(𝐫′, 𝐑′, 𝜔′)∫𝑑3𝐑𝐆(𝐫, 𝐑,𝜔)⟨𝐣†(𝐑′, 𝜔′)𝐣(𝐑,𝜔)⟩

el
, (S1.19)  

So, a knowledge of the current correlations ⟨𝐣†(𝐑′, 𝜔′)𝐣(𝐑,𝜔)⟩
el

 of the electrons provides 

the value for the electric field autocorrelation⟨𝐄†(𝐫′, 𝜔′)𝐄(𝐫,𝜔)⟩. 

S2. Current correlations of free quantum emitters  

In this section we wish to show that the quantum current-current correlations of free charged 

particles appearing in Eq. (S1.19) can be re-written in terms of the first- and second-order 

correlation functions of the particle field, 𝐺e
(1) and 𝐺e

(2), respectively, as: 

⟨𝐣(𝐱′)𝐣(𝐱)⟩el = 𝑒
2𝐯0𝐯0 [𝐺e

(2)(𝐱′, 𝐱) + 𝛿(𝐱 − 𝐱′)𝐺e
(1)(𝐱, 𝐱)] 

with 𝐱 = 𝐱(𝐫, 𝑡) = 𝐫 − 𝐯0𝑡 and where 𝐯0 is the carrier velocity shared by the particle 

wavepackets under the paraxial approximation. This will help us connect particle quantum 

correlations and optical quantum correlations, which is at the core of super- and subradiance.  

By a "free quantum emitter", we refer to particles which emit waves as they propagate 

through a medium due to recoil of their center of mass motion, and not due to any internal 

degree of freedom like an atom. Below we detail how to derive the current-current 

correlations for an arbitrary number of particles, wherein electrons emitting Cherenkov 

radiation are considered as a case study. 

First quantization 

In first quantization, a generalization of the current operator to 𝑁 particles is: 

𝐣(𝐫) = 𝑒𝑐∑𝛿(𝐫(𝑖) − 𝐫)𝛂(𝑖)
𝑁

𝑖=1

, (S2.2) 
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in the relativistic case, and 

𝐣(+)(𝐫) =
𝑒

2𝑚
∑𝛿(𝐫(𝑖) − 𝐫)𝐩(𝑖)
𝑁

𝑖=1

, (S2.1) 

in the non-relativistic case, with 𝐣(𝐫) → 2𝐣(+)(𝐫) in the equations derived above (see boxed 

comment following Eq. ()).  

In order to avoid the redundancy of first quantization when dealing with identical particles, 

from now on we'll employ second quantization to describe both the current operator and 

the electron state 𝜌el.  

Second quantization: nonrelativistic current 

Now we promote the wavefunction 𝜓(𝐫, 𝑡) to an operator �̂�(𝐫, 𝑡). 

In second quantization of either bosons, [𝑏𝐤, 𝑏𝐤′
† ] = 𝛿𝐤𝐤′  or fermions {𝑏𝐤, 𝑏𝐤′

† } = 𝛿𝐤𝐤′  the 

current density operator of free, massive particles described by nonrelativistic quantum 

mechanics is 

𝐣(𝐫, 𝑡) =
𝑒ℏ

2𝑖𝑚
[�̂�†(𝐫, 𝑡)𝛁�̂�(𝐫, 𝑡) − (𝛁�̂�†(𝐫, 𝑡)) �̂�(𝐫, 𝑡)] = 𝐣(+)(𝐫, 𝑡) + 𝐣(−) (𝐫, 𝑡), (S2.3) 

where �̂�(𝐫, 𝑡) = ∑
𝑒
𝑖(𝐤⋅𝐫−

𝐸𝐤
ℏ 𝑡)

√𝑉
𝑏𝐤𝐤  is the position space annihilation operator in the Heisenberg 

picture for a free particle. Let us now find a simple expression for the current that holds for 

free particles in the approximation of zero-recoil, as well as in the paraxial approximation. Our 

results will qualitatively hold even upon relaxation of these approximations. Substituting the 

wavefunctions into the current operator we find 

𝐣(𝐫, 𝑡) =
𝑒ℏ

2𝑚𝑉
[∑∑𝑒𝑖(𝐤−𝐤

′)⋅𝐫𝑒−𝑖
𝐸𝐤−𝐸𝐤′
ℏ 𝑡(𝐤 + 𝐤′)

𝐤

𝑏
𝐤′
† 𝑏𝐤

𝐤′

].  (S2.4) 

Taking the Fourier transform, we find: 

𝐣(𝐪, 𝑡) = ∫𝑑3𝐫𝑒−𝑖𝐪⋅𝐫𝐣(𝐫, 𝑡) =
𝑒ℏ

𝑚𝑉
∑𝑒𝑖

𝐸𝐤−𝐪−𝐸𝐤
ℏ 𝑡 (𝐤 −

𝐪

2
) 𝑏𝐤−𝐪

† 𝑏𝐤
𝐤

.   (S2.5) 

In the paraxial and zero-recoil limits, we replace 𝐤 with 𝐤0 and demand 𝑞 ≪ 𝑘0 such that 
𝐸𝐤−𝐪−𝐸𝐤

ℏ
= 𝐪 ⋅ 𝐯0. We then find for both bosons and fermions: 

𝐣(𝐪, 𝑡) = 𝑒𝐯0𝑒
−𝑖𝐪⋅𝐯0𝑡

1

𝑉
∑𝑏𝐤−𝐪

† 𝑏𝐤
𝐤

, (S2.6) 

where 𝐯0 denotes the emitter's carrier velocity. Going back to the position-space 

representation, we have: 

𝐣(𝐫, 𝑡) = 𝑒𝐯0�̂�
†(𝐫 − 𝐯0𝑡)�̂�(𝐫 − 𝐯0𝑡), (S2.7) 

It turns out that this approximate result for the Hermitian current operator 𝐣(𝐫, 𝑡), also 
holds if we choose to start from the nonrelativistic positive-frequency current as in the first-
quantization case, applying the same approximations: 
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2𝐣(+)(𝐫, 𝑡) = 2
𝑒ℏ

2𝑖𝑚
�̂�†(𝐫, 𝑡)𝛁�̂�(𝐫, 𝑡) = 𝑒𝐯0�̂�

†(𝐫 − 𝐯0𝑡)�̂�(𝐫 − 𝐯0𝑡) 

making the non-Hermiticity of  𝐣(+)(𝐫, 𝑡) negligible up to corrections to the paraxial and 
zero-recoil approximations. Thus, from here onwards we shall refer to Eq. (S2.7) as the 
nonrelativistic current operator. 

Second quantization: relativistic current 

Similarly, now we promote the spinor 𝛙(𝐫, 𝑡) to an operator �̂�(𝐫, 𝑡). 

Here, we start from the 4-current 

𝑗𝜇 = �̅̂�𝛾𝜇�̂� = �̂�†𝛾0𝛾𝜇�̂�, (S2.8) 

The Hermitian 3-current is, in turn,  

𝑗𝑖 = 𝑒𝑐�̂�†𝛾0𝛾𝑖�̂� = 𝑒𝑐�̂�†𝛼𝑖�̂�, (S2.9) 

Let us write 

�̂�(𝐫, 𝑡) =∑𝑏𝐩𝜎𝐮𝐩𝜎
𝑒𝑖(𝐩⋅𝐫−𝐸𝐩𝜎𝑡)/ℏ

√𝑉
𝐩,𝜎

, (S2.10) 

with 𝜎 =↑+, ↓+, ↑−, ↓− denoting spin and particle/antiparticle. Substituting, we have that 

𝐣(𝐫, 𝑡) = 𝑒𝑐�̂�†𝛂�̂� =
𝑒𝑐

𝑉
∑∑ 𝑏

𝐩′𝜎′
† 𝑏𝐩𝜎𝐮𝐩′𝜎′

† 𝛂𝐮𝐩𝜎𝑒
𝑖[(𝐩−𝐩′)⋅𝐫−(𝐸𝐩𝜎−𝐸𝐩′𝜎′)𝑡]/ℏ

𝐩′,𝜎′𝐩,𝜎

, (S2.11) 

Although a thorough treatment of the role of spin and recoil corrections in CR was discussed 

in Ref. [50], for simplicity we choose here to neglect any recoil and spin-flip contributions to 

the current operator. Recoil corrections are typically orders of magnitude smaller than the 

electron momentum, making this approximation quite accurate. Also, we keep only 

contributions where a particle scatters to a particle (no particle-antiparticle transitions), and 

thus restrict ourselves to 𝜎 =↑, ↓. Again, employing the zero-recoil and paraxial 

approximations, we find that: 

𝐮
𝐩′𝜎′
† 𝛂𝐮𝐩𝜎 ≅

1

𝑐
𝐯0𝛿𝜎𝜎′ , (S2.12) 

𝐸𝐩 − 𝐸𝐩′ ≅ (𝐩 − 𝐩
′) ⋅ 𝐯0, (S2.13) 

𝐣(𝐫, 𝑡) ≅
𝑒𝐯0
𝑉
∑∑𝑏

𝐤′𝜎
† 𝑏𝐤𝜎𝑒

𝑖(𝐤−𝐤′)⋅(𝐫−𝐯0𝑡)

𝐤,𝐤′𝜎

, (S2.14) 

where now the carrier velocity is 𝐯0 =
𝐩0

𝑚𝛾
. Now, since {𝑏𝐤𝜎 , 𝑏𝐤′𝜎′

† } = 𝛿𝐤𝐤′𝛿𝜎𝜎′, if we 

redefine for each spin 𝜎 a scalar operator 

�̂�𝜎(𝐫 − 𝐯0𝑡) =∑𝑏𝐤𝜎
𝑒𝑖𝐤⋅(𝐫−𝐯0𝑡)

√𝑉
𝐤

, (S2.15) 

Then the spatial anti-commutation relation (at equal times) of these new operators becomes 
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{�̂�𝜎(𝐫 − 𝐯0𝑡), �̂�𝜎′
† (𝐫′ − 𝐯0𝑡)} =∑

𝑒𝑖𝐤⋅(𝐫−𝐯0𝑡)

√𝑉
𝐤

∑{𝑏𝐤𝜎 , 𝑏𝐤′𝜎′
† }

𝑒−𝑖𝐤
′⋅(𝐫′−𝐯0𝑡)

√𝑉
𝐤′

= 𝛿𝜎𝜎′∑
𝑒𝑖𝐤⋅(𝐫−𝐫

′)

𝑉
𝐤

= 𝛿𝜎𝜎′𝛿(𝐫 − 𝐫
′), (S2.16) 

from which it follows that 

𝐣(𝐫, 𝑡) = 𝑒𝐯0∑�̂�𝜎
†(𝐫 − 𝐯0𝑡)�̂�𝜎(𝐫 − 𝐯0𝑡)

𝜎

, (S2.17) 

quite similarly to the non-relativistic case. 

Current correlations 

Since, for both nonrelativistic and relativistic particles, the current operator obtains a similar 

form, we may proceed by analysing the general behaviour. The current correlations 

appearing in Eq. (S1.20) can be rewritten  

⟨𝑗𝛼(𝐫
′, 𝑡′)𝑗𝛽(𝐫, 𝑡)⟩el = 𝑒

2𝑣0𝛼 𝑣0𝛽∑∑⟨�̂�
𝜎′
† (𝐫′ − 𝐯0𝑡

′)�̂�𝜎′(𝐫
′ − 𝐯0𝑡

′)�̂�𝜎
†(𝐫 − 𝐯0𝑡)�̂�𝜎(𝐫 − 𝐯0𝑡)⟩

𝜎𝜎′

,

(S2.18) 

We bring the expression ⟨�̂�
𝜎′
† �̂�𝜎′�̂�𝜎

†�̂�𝜎⟩ to normal order using the commutation relations 

for bosons, or anticommutation relations for fermions, to obtain the same results: 

⟨𝑗𝛼(𝐫
′, 𝑡′)𝑗𝛽(𝐫, 𝑡)⟩

el

= 𝑒2𝑣0𝛼 𝑣0𝛽∑∑⟨�̂�𝜎′
† (𝐫′ − 𝐯0𝑡

′)�̂�𝜎
†(𝐫 − 𝐯0𝑡)�̂�𝜎(𝐫 − 𝐯0𝑡)�̂�𝜎′(𝐫

′ − 𝐯0𝑡
′)⟩

𝜎𝜎′

+ 𝑒2𝑣0𝛼 𝑣0𝛽𝛿[𝐫 − 𝐫
′ − 𝐯0(𝑡 − 𝑡

′)]∑⟨�̂�𝜎
†(𝐫 − 𝐯0𝑡)�̂�𝜎(𝐫 − 𝐯0𝑡)⟩

𝜎

, (S2.19) 

Now, define the first and second order correlation functions of the emitters as 

𝐺e
(1)(𝐱, 𝐱) = ∑⟨�̂�𝜎

†(𝐱)�̂�𝜎(𝐱)⟩

𝜎

= 𝜌e(𝐱, 𝐱), (S2.20) 

𝐺e
(2)(𝐱′, 𝐱) =∑∑⟨�̂�

𝜎′
† (𝐱′)�̂�𝜎

†(𝐱)�̂�𝜎(𝐱)�̂�𝜎′(𝐱
′)⟩

𝜎𝜎′

, (S2.21) 

with 𝐱 = 𝐫 − 𝐯0𝑡 and 𝜌e(𝐱, 𝐱) is the diagonal of the emitter density matrix, so that 

⟨𝑗𝛼(𝐱
′)𝑗𝛽(𝐱)⟩el

= 𝑒2𝑣0𝛼 𝑣0𝛽𝐺
(2)(𝐱′, 𝐱) + 𝑒2𝑣0𝛼 𝑣0𝛽𝛿(𝐱 − 𝐱

′)𝐺e
(1)(𝐱, 𝐱).  (S2.22) 

In Fourier space: 

⟨𝑗𝛼
†(𝐪′, 𝜔′)𝑗𝛽(𝐪,𝜔)⟩el

= ∫𝑑𝑡′∫𝑑3𝐫′ 𝑒−𝑖(𝐪
′⋅𝐫′−𝜔′𝑡′)∫𝑑𝑡∫𝑑3𝐫𝑒𝑖(𝐪⋅𝐫−𝜔𝑡) ⟨𝑗𝛼

†(𝐫′, 𝑡′)𝑗𝛽(𝐫, 𝑡)⟩el

= (2𝜋)2𝑒2𝑣0𝛼 𝑣0𝛽𝛿(𝜔
′ − 𝐪′ ⋅ 𝐯0)𝛿(𝜔 − 𝐪 ⋅ 𝐯0)

× [∫𝑑3𝐱∫𝑑3𝐱′ 𝑒𝑖𝐪⋅𝐱−𝑖𝐪
′⋅𝐱′𝐺e

(2)(𝐱′, 𝐱) + ∫𝑑3𝐱𝑒𝑖(𝐪−𝐪
′)⋅𝐱𝐺e

(1)(𝐱, 𝐱)] ,

(S2.23) 
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S3. Total radiated power of coherent Cathodoluminescence 

In this section we combine the results of the previous sections to obtain the emitted 

optical power spectrum of any coherent cathodoluminescence process, and then 

focusing on Cherenkov radiation.  

The radiated power detected in the far-field, at a distance 𝑟 and direction 𝐧 is 

proportional to the time-average of the quantum expectation value 

𝑑𝑃

𝑑Ω
= 2𝑟2𝜖0𝑐

1

𝑇
∫𝑑𝑡 ⟨|𝐄(𝑟�̂�, 𝑡)|2⟩ = 2𝑟2𝜖0𝑐

1

2𝜋𝑇
∫ 𝑑𝜔 ⟨|𝐄(𝑟�̂�, 𝜔)|2⟩, (S3.1) 

and, per unit frequency, reads 

𝑑2𝑃

𝑑Ω𝑑𝜔
= 2𝑟2𝜖0𝑐

1

2𝜋𝑇
⟨|𝐄(𝑟�̂�, 𝜔)|2⟩.  (S3.2) 

Using Eq. (S1.19) let us write the expression for the field spectral intensity 

⟨|𝐄(𝐫, 𝜔)|2⟩ = Tr⟨𝐄†(𝐫, 𝜔)𝐄(𝐫,𝜔)⟩

= 𝜇0
2𝜔2∫𝑑3𝐑′∫𝑑3𝐑Tr𝐆†(𝐫, 𝐑′, 𝜔)𝐆(𝐫, 𝐑,𝜔)⟨𝐣†(𝐑′, 𝜔′)𝐣(𝐑, 𝜔)⟩

el
,

(S3.3) 

so that, we find the general result: 

𝑑2𝑃

𝑑Ω𝑑𝜔
= 2𝑟2𝜖𝑐𝜇0

2𝜔2
1

2𝜋𝑇
∫𝑑3𝐑′∫𝑑3𝐑Tr𝐆†(𝐫, 𝐑′, 𝜔)𝐆(𝐫, 𝐑,𝜔)⟨𝐣†(𝐑′, 𝜔)𝐣(𝐑,𝜔)⟩

el
.    (S3.4)  

For example, for Cherenkov radiation, the far field Green function is 

𝐆(𝐫, 𝐫′, 𝜔) =
𝑒𝑖𝑞𝑟

4𝜋𝑟
(𝐈 − �̂��̂�)𝑒−𝑖𝐪⋅𝐫

′
, (S3.5) 

where 𝐪 = �̂�𝑛𝜔/𝑐 is the wavevector of the emitted radiation in the observation direction. So, 

we find 

𝑑2𝑃

𝑑Ω𝑑𝜔
=

1

(4𝜋)2
1

2𝜋𝑇
2𝜖0𝑐𝜇0

2𝜔2 sin2 𝜃 ⟨𝑗𝑧
† (
𝑛𝜔

𝑐
�̂�, 𝜔) 𝑗𝑧 (

𝑛𝜔

𝑐
�̂�, 𝜔)⟩

el
, (S3.6) 

with 

⟨𝑗𝑧
† (
𝑛𝜔

𝑐
�̂�, 𝜔) 𝑗𝑧 (

𝑛𝜔

𝑐
�̂�, 𝜔)⟩

el

=
(2𝜋)2𝑒2𝑣0

2

𝜔𝑛𝛽
𝛿(0)⏟
𝑇/2𝜋

𝛿 (cos 𝜃 −
1

𝑛𝛽
)

× [∫𝑑3𝐱𝐺e
(1)(𝐱, 𝐱) +∫𝑑3𝐱∫𝑑3𝐱′ 𝑒𝑖𝐪⋅(𝐱−𝐱

′)𝐺e
(2)(𝐱′, 𝐱)] , (S3.7) 

Finally giving for Cherenkov radiation: 

𝑑2𝑃

𝑑Ω𝑑𝜔
=
ℏ𝜔𝛼𝛽

2𝜋
sin2 𝜃 𝛿 (cos 𝜃 −

1

𝑛𝛽
) [∫𝑑3𝐱𝐺e

(1)(𝐱, 𝐱) + ∫𝑑3𝐱∫𝑑3𝐱′ 𝑒𝑖𝐪⋅(𝐱−𝐱
′)𝐺e

(2)(𝐱′, 𝐱)] , (S3.8)  
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S4. Entangled vs. classically correlated emitter pairs 

In this section we calculate the emission rates from pairs of free emitters, showing that one 

obtains a new kind of super- and sub-radiance for entangled pairs, that cannot be achieved 

by a classically-correlated pair.  

We now examine how the emission pattern of a general spontaneous emission process from 

free emitters is influenced by the quantum mechanical state of an emitter pair. Consider a 

two-electron state prepared in two spectrally distinguishable wavepacket states: 

𝜑1(𝐫), 𝜑2(𝐫) and different spins ↑↓. The wavepackets share a common carrier wavevector 

𝐤0, and differ by a small wavevector difference ±𝛋  (𝜅 ≪ 𝑘0) in the following manner.  

The relation between the wavepackets 𝜑1(𝐫),𝜑2(𝐫) (decoupled from their respective 

spinors) and their shifted momentum representation 𝜙(𝐤) is then 

𝜑1,2(𝐫) = ∫𝑑
3𝐤𝜙(𝐤 − 𝐤0 ∓ 𝛋)𝑒

𝑖(𝐤⋅𝐫−𝜔𝑘𝑡)

≅ 𝑒±𝑖𝛋⋅(𝐫−𝐯0𝑡)𝜑(𝐫 − 𝐯0𝑡)𝑒
𝑖(𝐤0⋅𝐫−𝜔|𝐤0|𝑡), (S4.1) 

In what follows, it is useful for us to define (with 𝐱 = 𝐫 − 𝐯0𝑡) 

𝜑1,2(𝐱) = 𝑒
±𝑖𝛋⋅𝐱𝜑(𝐱).  (S4.2) 

In Eq. (S.4.1), we take walk-off effects (longitudinal and transverse) due to the small 

difference in the group velocities of 𝜑1(𝐫) and 𝜑2(𝐫) to be negligible as we shall assume a 

large wavefunction in the respective dimension. The overlap between the wavepackets is 

given as: 

⟨𝜑2|𝜑1⟩ = ∫𝑑
3𝐫𝜑2

∗(𝐫)𝜑1(𝐫) = ∫𝑑
3𝐫|𝜑(𝐫)|2𝑒2𝑖𝛋⋅𝐫

= {
0, when |𝜑(𝐫)|2 is wider than

2𝜋

𝜅
in the �̂� direction

1,when |𝜑(𝐫)|2 is narrower than
2𝜋

𝜅
in the �̂� direction

.  (S4.3) 

This same condition, together with the requirement of negligible temporal walkoff, can be 

recast in momentum space as 

Δ𝑘 ≪ |𝐤 − 𝐤′| ≪
𝑚

2ℏ𝑡Δ𝑘
, (S4.4) 

where Δ𝑘 is the wavepacket coherent momentum uncertainty and 𝑡 the interaction time. For 

Δ𝑘 → 0 this condition is naturally satisfied. 

Below we consider the regime where ⟨𝜑2|𝜑1⟩ → 0, in agreement with the extended-

wavefunction approximation that we employ. 

Classically correlated state: 

We first consider a classical (probabilistic) correlation between the two electrons, wherein if 

one is found in state 𝜑1 ↑, it is correlated with the other to be found in 𝜑2 ↓, and vice versa. 

The density operator defining this state is  

𝜌 =
1

2
|𝜑1↑𝜑2↓⟩⟨𝜑1↑𝜑2↓| +

1

2
|𝜑2↑𝜑1↓⟩⟨𝜑2↑𝜑1↓|, (S4.5) 
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One easily shows that for this density matrix, the correlation functions are 

𝐺e
(1)(𝐱, 𝐱) =∑⟨�̂�𝜎

†(𝐱)�̂�𝜎(𝐱)⟩

𝜎

= 2|𝜑(𝐱)|2, (S4.6) 

𝐺e
(2)(𝐱′, 𝐱) =∑∑⟨�̂�

𝜎′
† (𝐱′)�̂�𝜎

†(𝐱)�̂�𝜎(𝐱)�̂�𝜎′(𝐱
′)⟩

𝜎𝜎′

= 2|𝜑(𝐱)|2|𝜑(𝐱′)|2, (S4.7) 

According to Eq. (2) in the main text,  

⟨𝐣†(𝐱′)𝐣(𝐱)⟩ = 𝑒2𝐯0𝐯0 [𝐺e
(2)(𝐱′, 𝐱) + 𝛿(𝐱 − 𝐱′)𝐺e

(1)(𝐱, 𝐱)] , (S4.8) 

this means that the current fluctuations of the classically correlated state are 

⟨𝐣†(𝐱′)𝐣(𝐱)⟩
c
= 𝑒2𝐯0𝐯0[2|𝜑(𝐱)|

2|𝜑(𝐱′)|2 + 2𝛿(𝐱 − 𝐱′)|𝜑(𝐱)|2], (S4.9) 

Entangled state: 

We now consider the emitters being prepared in an entangled, pure state (Bell state):  

|Ψ⟩ =
|𝜑1↑𝜑2↓⟩ + 𝑒

𝑖𝜁|𝜑1↓𝜑2↑⟩

√2
, (S4.10) 

with 𝜁 being a phase factor. We emphasize that this state is written in the Fock basis using 

wavepacket quantization, and that the two electrons considered here are distinguishable by 

spin. Computing the correlation functions using: 

�̂�↑(𝐫)|Ψ⟩ =
𝜑1
∗(𝐫)|𝜑2↓⟩ − 𝑒

𝑖𝜁𝜑2
∗(𝐫)|𝜑1↓⟩

√2
, (S4.11) 

�̂�↓(𝐫)|Ψ⟩ =
−𝜑2

∗(𝐫)|𝜑1↑⟩ + 𝑒
𝑖𝜁𝜑1

∗(𝐫)|𝜑2↑⟩

√2
, (S4.12) 

�̂�↓(𝐫
′)�̂�↑(𝐫)|Ψ⟩ =

𝜑1
∗(𝐫)𝜑2

∗(𝐫′) − 𝑒𝑖𝜁𝜑2
∗(𝐫)𝜑1

∗(𝐫′)

√2
|0⟩, (S4.13) 

�̂�↑(𝐫
′)�̂�↓(𝐫)|Ψ⟩ =

−𝜑1
∗(𝐫′)𝜑2

∗(𝐫) + 𝑒𝑖𝜁𝜑1
∗(𝐫)𝜑2

∗(𝐫′)

√2
|0⟩, (S4.14) 

gives: 

𝐺e
(1)(𝐱, 𝐱) = 2|𝜑(𝐱)|2, (S4.15) 

and, via direct calculation 

⟨Ψ|�̂�↑
†(𝐫)�̂�↓

†(𝐫′)�̂�↓(𝐫
′)�̂�↑(𝐫)|Ψ⟩

=
[𝜑1(𝐫)𝜑2(𝐫

′) − 𝑒−𝑖𝜁𝜑2(𝐫)𝜑1(𝐫
′)][𝜑1

∗(𝐫)𝜑2
∗(𝐫′) − 𝑒𝑖𝜁𝜑2

∗(𝐫)𝜑1
∗(𝐫′)]

2

= |𝜑(𝐫)|2|𝜑(𝐫′)|2 −
1

2
𝑒𝑖𝜁𝑒𝑖2𝛋⋅(𝐫−𝐫

′)|𝜑(𝐫)|2|𝜑(𝐫′)|2

−
1

2
𝑒−𝑖𝜁𝑒−𝑖2𝛋⋅(𝐫−𝐫

′)|𝜑(𝐫)|2|𝜑(𝐫′)|2 
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⟨Ψ|�̂�↓
†(𝐫)�̂�↑

†(𝐫′)�̂�↑(𝐫
′)�̂�↓(𝐫)|Ψ⟩

=
[−𝜑1(𝐫

′)𝜑2(𝐫) + 𝑒
−𝑖𝜁𝜑1(𝐫)𝜑2(𝐫

′)][−𝜑1
∗(𝐫′)𝜑2

∗(𝐫) + 𝑒𝑖𝜁𝜑1
∗(𝐫)𝜑2

∗(𝐫′)]

2

= |𝜑(𝐫)|2|𝜑(𝐫′)|2 −
1

2
𝑒−𝑖𝜁𝑒𝑖2𝛋⋅(𝐫−𝐫

′)|𝜑(𝐫)|2|𝜑(𝐫′)|2

−
1

2
𝑒𝑖𝜁𝑒−𝑖2𝛋⋅(𝐫−𝐫

′)|𝜑(𝐫)|2|𝜑(𝐫′)|2 

we find 

𝐺e
(2)(𝐱′, 𝐱) = 2|𝜑(𝐱)|2|𝜑(𝐱′)|2 − cos 𝜁 2|𝜑(𝐱)|2|𝜑(𝐱′)|2 cos[Δ𝐤 ⋅ (𝐱 − 𝐱′)] , (S4.16) 

with Δ𝐤 = 2𝛋.  

Comparison of the emission patterns: 

As a consequence of Eq. (1) of the main text, it is obvious that the emission patterns satisfy 

the relation 

𝑃ent = 𝑃c − cos 𝜁 𝑃q, (S4.17) 

which shows that spontaneous emission is sensitive to the phase of the entangled emitter 

pair. This effect cannot be described using the classical correlation.  

For Cherenkov radiation specifically, we find 

𝑑2𝑃

𝑑Ω𝑑𝜔
=
ℏ𝜔𝛼𝛽

2𝜋
sin2 𝜃 𝛿 (cos 𝜃 −

1

𝑛𝛽
)

{
 

 
2 + 2 |∫𝑑3𝐱𝑒−𝑖

𝑛𝜔
𝑐 �̂�⋅𝐱|𝜑(𝐱)|2|

2

⏟                    
classical

− cos 𝜁 [|∫𝑑3𝐱𝑒
−𝑖(

𝑛𝜔
𝑐
�̂�−Δ𝐤)⋅𝐱|𝜑(𝐱)|2|

2

+ |∫𝑑3𝐱𝑒
−𝑖(

𝑛𝜔
𝑐
�̂�+Δ𝐤)⋅𝐱|𝜑(𝐱)|2|

2

]
⏟                                          

quantum }
 

 
,

(S4.18) 

Now, we model the wavepacket as Gaussian with transverse width Δ𝑟𝑇𝑒 and longitudinal 

length Δ𝑧𝑒 : 

|𝜑(𝐱)|2 =
1

(2𝜋)
3
2Δ𝑧𝑒Δ𝑟𝑇e

2
𝑒
−
𝑥2+𝑦2

2Δ𝑟𝑇e
2
𝑒
−
𝑧2

2Δ𝑧𝑒
2
, (S4.19) 

This gives 

∫𝑑3𝐱𝑒−𝑖
𝑛𝜔
𝑐 �̂�⋅𝐱|𝜑(𝐱)|2 = 𝑒

−
𝜔2 cos2 𝜃
2(𝑐/𝑛Δ𝑧e)

2𝑒
−

𝜔2 sin2 𝜃
2(𝑐/𝑛Δ𝑟𝑇e)

2 = 𝑒
−

𝜔2

2(𝑣/Δ𝑧e)
2𝑒
−

𝜔2 sin2 𝜃
2(𝑐/𝑛Δ𝑟𝑇e)

2 , (S4.20) 

and 

∫𝑑3𝐫|𝜑(𝐫)|2𝑒𝑖Δ𝐤⋅𝐫 = 𝑒−
1
2Δ𝑧e

2Δ𝑘𝑧
2

𝑒−
1
2Δ𝑟𝑇e

2 Δ𝑘𝑇
2

.  (S4.21) 

First case: longitudinal beat Δ𝐤 = Δ𝑘�̂�: 

∫𝑑3𝐱𝑒−𝑖(
𝑛𝜔
𝑐 �̂�∓Δ𝐤)⋅𝐱|𝜑(𝐱)|2 = 𝑒

−
(𝜔∓𝑣Δ𝑘)2

2(𝑣/Δ𝑧e)
2𝑒
−

𝜔2 sin2 𝜃
2(𝑐/𝑛Δ𝑟𝑇e)

2 , (S4.22) 
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by choosing the wave function dimensions to satisfy 

𝑣

Δ𝑧𝑒
≪ 𝜔 ≪

𝑐

𝑛Δ𝑟𝑇e
, (S4.23) 

(e.g., a longitudinally long and transversely narrow wavefunction with respect to the emitted 

wavelength) and ensuring Δz𝑒Δ𝑘 ≫ 1, we have 

𝑑2𝑃

𝑑Ω𝑑𝜔
=
ℏ𝜔𝛼𝛽

2𝜋
sin2 𝜃 𝛿 (cos 𝜃 −

1

𝑛𝛽
) {2 + 2𝑒

−
𝜔2

2(𝑣/Δ𝑧e)
2 − cos 𝜁 𝑒

−
(𝜔−𝑣Δ𝑘)2

(𝑣/Δ𝑧e)
2 } , (S4.24) 

Integrated over angles, the emission rate becomes: 

Γ(𝜔) = Γ0 [2 + 2𝑒
−

𝜔2

2(𝑣/Δ𝑧e)
2 − cos 𝜁 𝑒

−
(𝜔−𝑣Δ𝑘)2

(𝑣/Δ𝑧e)
2 ] , (S4.25) 

with Γ0 = 𝛼𝛽 sin
2 𝜃𝑐 denoting the classical emission rate for one particle. So, at the 

frequency 𝜔 = 𝑣Δ𝑘 corresponding to the beat note we can obtain a peak or a dip in the 

emission spectrum, as a function of the phase angle 𝜁.  

Second case: transverse beat Δ𝐤 = Δ𝑘�̂�: 

Choosing a transverse beat Δ𝑘 =
𝑛𝜔

𝑐
sin 𝜃 corresponding to the transverse emission recoil, 

we have that 

∫𝑑3𝐱𝑒−𝑖(
𝑛𝜔
𝑐 �̂�∓Δ𝐤)⋅𝐱|𝜑(𝐱)|2 = 𝑒

−
𝜔2

2(𝑣/Δ𝑧e)
2𝑒
−

1∓cos𝜑
(1/Δ𝑘Δ𝑟𝑇e)

2 , (S4.26) 

and, by choosing the wave function dimensions to satisfy 

𝑐

𝑛 sin 𝜃 Δ𝑟𝑇e
≪ 𝜔 ≪

𝑣

Δ𝑧e
, (S4.27) 

e.g., a transversely wide and longitudinally short wavefunction with respect to the emitted 

wavelength, we have that 

𝑑2𝑃

𝑑Ω𝑑𝜔
=
ℏ𝜔𝛼𝛽

2𝜋
sin2 𝜃 𝛿 (cos 𝜃 −

1

𝑛𝛽
) {2

− cos 𝜁 [𝑒−2(Δ𝑘Δ𝑟𝑇e)
2(1−cos𝜑) + 𝑒−2(Δ𝑘Δ𝑟𝑇e)

2(1+cos𝜑)]}, (S4.28) 

Integrated over 𝜃, we obtain the emission pattern on the Cherenkov cone per unit 

frequency 

1

Γ0

𝑑Γ

𝑑𝜑
= 2 − 2 cos 𝜁 𝑒−𝜂 cosh(𝜂 cos 𝜑) , (S4.29) 

with Γ0 =
𝛼𝛽

2𝜋
sin2 𝜃c is the classical emission pattern and 𝜂 = 2(Δ𝑘Δ𝑟𝑇e)

2 ≫ 1 for a 

transversely wide wavefunction. The expression 𝑒−𝜂 cosh(𝜂 cos 𝜑) equals 1/2 at 𝜑 = 0, 𝜋 

and vanishes otherwise. Thus, the emission pattern demonstrates two new peaks (or dips) at 

𝜑 = 0, 𝜋 on the Cherenkov cone, corresponding to the direction of the momentum beat. The 

new emission pattern depends on the phase angle 𝜁 of the electron Bell state.  
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S5. Comparison with emission by electron product states and classical superradiance by 

delayed electrons 

This section shows that classical super- and subradiance (due to, for example, to a temporal 

delay between free electrons or a spatio-temporal modulation of the electron charge density) 

is qualitatively and quantitatively different from the super- and subradiance effects that we 

find due to entanglement.  

Now let us show that classical super- and subradiance due to (for example) a temporal delay 

between free electrons can be told apart from the quantum effect. Let us consider first two 

electrons of waepackets 𝜑1(𝐫) and 𝜑2(𝐫). Without loss of generality let these electrons be 

distinguishable (e.g. by spin), such that their quantum state is a product state 

|Ψ⟩ = |𝜑1↑𝜑2↓⟩, (S5.1) 

Computing the correlation functions using: 

�̂�↑(𝐫)|Ψ⟩ = 𝜑1
∗(𝐫)|𝜑2↓⟩, (S5.2) 

�̂�↓(𝐫)|Ψ⟩ = −𝜑2
∗(𝐫)|𝜑1↑⟩, (S5.3) 

�̂�↓(𝐫
′)�̂�↑(𝐫)|Ψ⟩ = 𝜑2

∗(𝐫′)𝜑1
∗(𝐫)|0⟩, (S5.4) 

�̂�↑(𝐫
′)�̂�↓(𝐫)|Ψ⟩ = −𝜑1

∗(𝐫′)𝜑2
∗(𝐫)|0⟩, (S5.6) 

We find 

𝐺e
(1)(𝐫, 𝐫) = |𝜑1(𝐫)|

2 + |𝜑2(𝐫)|
2, (S5.7) 

𝐺e
(2)(𝐫, 𝐫′) = |𝜑1(𝐫)|

2|𝜑2(𝐫
′)|2 + |𝜑1(𝐫

′)|2|𝜑2(𝐫)|
2, (S5.8) 

Giving the classical result 

𝑑2𝑃

𝑑Ω𝑑𝜔
=
ℏ𝜔𝛼𝛽

2𝜋
sin2 𝜃 𝛿 (cos 𝜃 −

1

𝑛𝛽
) {2 + 2Re∫𝑑3𝐱∫𝑑3𝐱′ 𝑒−𝑖

𝑛𝜔
𝑐 𝐧⋅

(𝐱−𝐱′)|𝜑1(𝐱)|
2|𝜑2(𝐱

′)|2} ,

(S5.9) 

in comparison, for the entangled state  

|Ψ⟩ =
|𝜑1↑𝜑2↓⟩ + 𝑒

𝑖𝜁|𝜑1↓𝜑2↑⟩

√2
, (S5.10) 

we obtain the quantum result 

𝑑2𝑃

𝑑Ω𝑑𝜔
=
ℏ𝜔𝛼𝛽

2𝜋
sin2 𝜃 𝛿 (cos𝜃 −

1

𝑛𝛽
) {2+ 2Re∫𝑑3𝐱∫𝑑3𝐱′ 𝑒−𝑖

𝑛𝜔
𝑐 �̂�⋅(𝐱−𝐱

′)|𝜑1(𝐱)|
2|𝜑2(𝐱

′)|2
⏟                                  

classical

− cos 𝜁 ∫𝑑3𝐱∫𝑑3𝐱′ 𝑒−𝑖
𝑛𝜔
𝑐 �̂�⋅(𝐱−𝐱

′)2Re{𝜑1(𝐱)𝜑2
∗(𝐱)𝜑2(𝐱

′)𝜑1
∗(𝐱′)}

⏟                                        
quantum

} , (S5.11) 

Clearly, there is a distinct difference between the entangled and product states, as long as the 

quantum interference term does not vanish identically. This property does not depend on the 

choice of wavepacket modes 𝜑1 and 𝜑2.  
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S6. Electron-electron decoherence and entanglement generation by post-selection 

In this section we derive the final state of a system of free electrons (a single particle or a pair 

of opposite spins) following spontaneous emission of a photon in an arbitrary optical medium. 

The results are summarized in the table below. 

Property one electron two electrons of opposite spins 
Initial pure state |𝜓1el

(𝑖)⟩ = ∑𝜓1el
(𝑖)(𝐤)|𝐤⟩

𝐤

 

 

|𝜓2el
(𝑖) ⟩ = ∑ 𝜓2el

(𝑖)(𝐤1, 𝐤2)|𝐤1𝐤2⟩

𝐤1𝐤2

 

(may or may not be entangled) 

Interaction 𝐻int =
𝑒

𝑚
𝐀(�̂�) ⋅ 𝐩 

𝐻int =
𝑒

𝑚
∑𝐀(�̂�𝑗) ⋅ 𝐩𝑗

2

𝑗=1

 

Optical medium 
response 

Im𝐆(𝐪,𝜔) 
(uniform, dispersive and lossy medium) 

Recoiled state, for 
a given recoil 𝐪 

|𝜓1rec
(𝑖) (𝐪)⟩ =∑𝜓1el

(𝑖)(𝐤)|𝐤 − 𝐪⟩

𝐤

 

 

|𝜓2rec
(𝑖) (𝐪)⟩ =

1

√𝑁𝐪
∑ 𝜓2el

(𝑖)(𝐤1, 𝐤2)(|𝐤1 − 𝐪;𝐤2⟩ + |𝐤1; 𝐤2 −𝐪⟩)

𝐤1𝐤2

 

𝑁𝐪 = 2 + 2Re ∑ 𝜓2el
(𝑖)∗(𝐤1 + 𝐪,𝐤2 − 𝐪)𝜓2el

(𝑖)(𝐤1, 𝐤2)

𝐤1𝐤2

 

Final mixed state 𝛒1el
(𝑓) = ∫𝑑3𝐪𝑝1𝐪 |𝜓1rec

(𝑖) (𝐪)⟩⟨𝜓1rec
(𝑖) (𝐪)| 𝛒2el

(𝑓) = ∫𝑑3𝐪𝑝2𝐪 |𝜓2rec
(𝑖) (𝐪)⟩⟨𝜓2rec

(𝑖) (𝐪)| 

Recoil probabilities 𝑝𝟏𝐪 =
Im𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)

∫ 𝑑3𝐪Im 𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯)
 𝑝𝟐𝐪 =

𝑁𝐪Im𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯)

∫ 𝑑3𝐪𝑁𝐪Im 𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯)
 

Post-selection 
chain 

|𝐤⟩ → |𝐤 − 𝐪⟩ → |𝐤 − 2𝐪⟩… 
|𝐤; 𝐤⟩ →

|𝐤 − 𝐪; 𝐤⟩ + |𝐤; 𝐤 − 𝐪⟩

√2

→
|𝐤;𝐤 − 2𝐪⟩ + |𝐤 − 2𝐪;𝐤⟩ + 2|𝐤 − 𝐪;𝐤 − 𝐪⟩

√6
→ ⋯ 

(two-electron entanglement creation) 

 

We investigate what happens to a free-electron system (single or two distinguishable 

electrons) after interaction with an optical medium. We consider a pure initial state: 

one electron:    |𝜓1el
(𝑖) ⟩ =∑𝜓1el

(𝑖) (𝐤)|𝐤⟩

𝐤

, (S6.1𝑎) 

two electrons:    |𝜓2el
(𝑖) ⟩ = ∑ 𝜓2el

(𝑖) (𝐤1, 𝐤2)|𝐤1𝐤2⟩

𝐤1𝐤2

, (S6.1𝑏) 

The electronic quantum state decoheres, but at the same time, retains a partial coherence.1 

The reason is that the final state can be written as a statistical mixture of recoiled copies of 

the original initial state    

one recoiled electron:    |𝜓1rec
(𝑖) (𝐪)⟩ =∑𝜓1el

(𝑖) (𝐤)|𝐤 − 𝐪⟩

𝐤

, (S6.2𝑎) 

two recoiled electrons:   |𝜓2rec
(𝑖) (𝐪)⟩ =

1

√𝑁𝐪
∑ 𝜓2el

(𝑖) (𝐤1, 𝐤2)(|𝐤1 − 𝐪; 𝐤2⟩ + |𝐤1; 𝐤2 − 𝐪⟩)

𝐤1𝐤2

,

(S6.2𝑏) 

for the latter state the normalization is state-dependent: 

 
1 For a single electron we have seen (in the first Cherenkov paper) that this partial coherence is sufficient to conserve the off-diagonal 

momentum coherence ∫𝑑3𝐤⟨𝐤 + 𝐪|𝛒|𝐤 − 𝐪⟩ that determines the optical coherence of the emitted light.   
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𝑁𝐪 = 2 + 2Re ∑ 𝜓2el
(𝑖)∗(𝐤1 + 𝐪, 𝐤2 − 𝐪)𝜓2el

(𝑖) (𝐤1, 𝐤2)

𝐤1𝐤2

, (S6.3) 

its value changes according to the interference between recoil paths (the same mechanism 

that results in super- and subradiance of light by the two-electron system). 

The final states then read: 

𝛒1el
(𝑓) = ∫𝑑3𝐪𝑝1𝐪 |𝜓1rec

(𝑖) (𝐪)⟩⟨𝜓1rec
(𝑖) (𝐪)|, with     𝑝1𝐪 =

Im𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯)

∫ 𝑑3𝐪Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)
, (S6.4𝑎)  

𝛒2el
(𝑓) = ∫𝑑3𝐪𝑝2𝐪 |𝜓2rec

(𝑖) (𝐪)⟩⟨𝜓2rec
(𝑖) (𝐪)|, with     𝑝2𝐪 =

𝑁𝐪Im𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯)

∫ 𝑑3𝐪𝑁𝐪Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)
, (S6.4𝑏) 

by interpreting 𝑝1𝐪 and 𝑝2𝐪 as emission probabilities, we see that for a single electron 𝑝1𝐪 is 

wavefunction-independent, and that 𝑝2𝐪 is wavefunction-dependent because of the 𝑁𝐪 term. 

As noted earlier, this exactly corresponds to the super- and subradiant emission we found in 

our paper. Here, the optical medium response Im𝐺𝑧𝑧(𝐪,𝜔) serves as a weight for different 

emission processes according to their relative strength. 

Final state purity 

The purities can be found via 

purity = Tr [𝛒𝑛el
(𝑓)]

2
= ∫𝑑3𝐪∫𝑑3𝐪′𝑝𝑛𝐪 𝑝𝑛𝐪′ |⟨𝜓𝑛rec

(𝑖) (𝐪′)|𝜓𝑛rec
(𝑖) (𝐪)⟩|

2
, (S6.5) 

with 𝑛 = 1,2. The purity is maximal (purity → 1), if all recoiled states significantly overlap in 

momentum space (e.g., due to a large initial momentum uncertainty), giving  

purity = ∫𝑑3𝐪∫𝑑3𝐪′𝑝𝑛𝐪 𝑝𝑛𝐪′ |⟨𝜓𝑛rec
(𝑖) (𝐪′)|𝜓𝑛rec

(𝑖) (𝐪)⟩|
2

⏟              
→1

= ∫𝑑3𝐪𝑝𝑛𝐪∫𝑑
3𝐪′ 𝑝𝑛𝐪′ = 1, (S6.6) 

this justifies the classical limit of point particles |𝜓|2 → 𝛿(𝐫 − 𝐯𝑡) with infinite momentum 

uncertainty: in this limit the state does not change upon recoil and stays pure. 

The other limit is that of minimal purity, obtained when the recoiled states are all orthogonal 

to each other (e.g., when starting with plane-wave electrons), giving 

purity = ∫𝑑3𝐪∫𝑑3𝐪′𝑝𝑛𝐪 𝑝𝑛𝐪′ |⟨𝜓𝑛rec
(𝑖) (𝐪′)|𝜓𝑛rec

(𝑖) (𝐪)⟩|
2

⏟              
→𝛿(𝐪−𝐪′)

= ∫𝑑3𝐪𝑝𝑛𝐪
2 , (S6.7) 

For both a single electron and an electron pair, the purity then satisfies 

∫𝑑3𝐪|Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)|
2

|∫ 𝑑3𝐪Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)|2
< purity < 1, (S6.8) 

Post selection 

This decoherence however, does not imply that all quantum coherence is lost: if one post-

selects a recoil 𝐪 by detecting a photon 𝐪 with 𝜔 = 𝐪 ⋅ 𝐯, the resulting single- or two-electron 

state "collapses" to the recoiled subspace, and becomes the corresponding recoiled copy: 

|𝜓𝑛rec
(𝑖) (𝐪)⟩, 𝑛 = 1,2 which by itself is a pure state. Within this recoiled state all the original 

quantum coherences of the original initial quantum state are preserved.    
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Interestingly, one may repeat this process, to create entanglement between two initially 

separable electrons: 

|𝐤;𝐤⟩ →
|𝐤 − 𝐪; 𝐤⟩ + |𝐤; 𝐤 − 𝐪⟩

√2
→
|𝐤;𝐤 − 2𝐪⟩ + |𝐤 − 2𝐪; 𝐤⟩ + 2|𝐤 − 𝐪; 𝐤 − 𝐪⟩

√6
→ ⋯ ,

(S6.9) 

 

Fig. S1: Electron-electron decoherence and entanglement generation by post-selection. (a) joint two-electron 

probability 𝑃2el  for the initial Bell state (|𝐸0 − 𝛿𝐸;𝐸⟩ + |𝐸0 ; 𝐸 − 𝛿𝐸⟩)/√2. The electrons interact with an 

environment hosting a range of possible optical excitations. The emitted photon is not observed. (b) joint 

probability for the final mixed state of Eq. (S6.4b) (𝑧-axis truncated to make the distribution visible). Quantum 

interference corresponding to emission of ℏ𝜔 = 𝛿𝐸 is still present (black arrow). (c-e) Electron-electron 

entanglement generated by post-selection, done by observing a photon at ℏ𝜔 = 𝛿𝐸. Density matrices of (c) an 

initial product state |𝐸0; 𝐸0⟩; (d) 2-level Bell state (|𝐸0 − 𝛿𝐸; 𝐸⟩ + |𝐸0; 𝐸 − 𝛿𝐸⟩)/√2 and (e) 3-level entangled state 

(|𝐸0 − 2𝛿𝐸; 𝐸⟩ + |𝐸0; 𝐸 − 2𝛿𝐸⟩ + 2|𝐸0 − 𝛿𝐸; 𝐸 − 𝛿𝐸⟩)/√6. Axis labels |−𝑗, −𝑘⟩ correspond to the states 

|𝐸0 − 𝑗𝛿𝐸;𝐸0 − 𝑘𝛿𝐸⟩. 
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Derivation of the results: 

Consider a two-electron initial state: 

𝛒2el
(𝑖) =∑𝜌2el

(𝑖) (𝐢1, 𝐢2; 𝐢1
′ , 𝐢2

′ )|𝐢1, 𝐢2⟩⟨𝐢1
′ , 𝐢2

′ |

𝐢1,𝐢2
𝐢1
′ ,𝐢2
′

, (1) 

The total state: two-electron + electromagnetic vacuum 

𝛒𝑖 = 𝛒2el
(𝑖) ⊗ |0⟩⟨0| = ∑𝜌2el

(𝑖) (𝐢1, 𝐢2; 𝐢1
′ , 𝐢2

′ )|𝐢1, 𝐢2⟩⟨𝐢1
′ , 𝐢2

′ |

𝐢1,𝐢2
𝐢1
′ ,𝐢2
′

⊗ |0⟩⟨0|, (2) 

Following light-matter interaction, the total (electron pair + light) final state is: 

𝛒𝑓 =∑𝜌2el
(𝑖) (𝐢1, 𝐢2; 𝐢1

′ , 𝐢2
′ )∑𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎

𝐟1𝐟2
𝐫𝜔𝜎

∑ 𝑀
𝐢1
′ 𝐢2
′→𝐟1

′𝐟2
′ ;𝐫′𝜔′𝜎′

∗

𝐟1
′ 𝐟2
′

𝐫′𝜔′𝜎′

|𝐟1𝐟2; 1𝐫𝜔𝜎⟩⟨𝐟1
′𝐟2
′ ; 1𝐫′𝜔′𝜎′|

𝐢1,𝐢2
𝐢1
′ ,𝐢2
′

, (3) 

Note that |1𝐫𝜔𝜎⟩ stands for an optical excitation at position 𝐫, frequency 𝜔 and polarization 

𝜎. The transition amplitudes are: 

𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎 =
𝑖

ℏ
∫𝑑𝑡 ⟨𝐟1𝐟2; 1𝐫𝜔𝜎|𝐻int|𝐢1𝐢2; 0⟩, (4) 

where 

𝐻int =
𝑒

𝑚
∑𝐀(�̂�𝑗) ⋅ 𝐩𝑗
𝑗

, (5) 

is the interaction Hamiltonian, summing over the two electrons. The electromagnetic vector 

potential in macroscopic QED is given by  

𝐀(𝐫) = √
ℏ

𝜋𝜖0

1

𝑐2
∫𝜔 𝑑𝜔∫𝑑3𝐫′√Im 𝜖(𝐫′, 𝜔) 𝐆(𝐫, 𝐫′, 𝜔)𝐟(𝐫′, 𝜔) + ℎ. 𝑐., (6) 

where 𝐆(𝐫, 𝐫′, 𝜔) is the dyadic Green's function of the medium, 𝜖(𝐫′, 𝜔) the relative 

permittivity, and the operators annihilation operators  𝐟(𝐫, 𝜔) satisfying  

[𝑓𝛼(𝐫, 𝜔), 𝑓𝛽
†(𝐫′, 𝜔′)] = 𝛿𝛼𝛽𝛿(𝐫 − 𝐫

′)𝛿(𝜔 − 𝜔′), (7) 

The transition amplitude is found to be: 

𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎 =
𝑖

ℏ
𝑒√

ℏ

𝜋𝜖0

𝑣0
𝑐2
𝜔2𝜋𝛿(𝜔 − 𝜔𝐢2;𝐟2

𝐢1;𝐟1)√Im 𝜖(𝐫, 𝜔)

×∑∫𝑑3𝐫1∫𝑑
3𝐫2 𝐺𝜎𝑧

∗ (𝐫𝑗 , 𝐫, 𝜔)𝑒
𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2

𝑗

, (8) 

where 

𝜔𝐢2;𝐟2
𝐢1;𝐟1 =

𝐸𝐢1 − 𝐸𝐟1 + 𝐸𝐢2 − 𝐸𝐟2
ℏ

, (9) 
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Derivation of Eq. (8) 
Consider 

𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎 =
𝑖

ℏ

𝑒

𝑚
∑∫𝑑𝑡 ⟨𝐟1𝐟2; 1𝐫𝜔𝜎|𝐀(�̂�𝑗) ⋅ 𝐩𝑗|𝐢1𝐢2; 0⟩

𝑗

 

The matrix element of the 𝑗th electron is 

⟨𝐟1𝐟2; 1𝐫𝜔𝜎|𝐀(𝐫𝑗) ⋅ 𝐩𝑗|𝐢1𝐢2; 0⟩ = ∫𝑑
3𝐫1∫𝑑

3𝐫2 ⟨𝐟1𝐟2; 1𝐫𝜔𝜎|𝐀(𝐫𝑗)|𝐫1𝐫2; 0⟩ ⋅ ⟨𝐫1𝐫2; 0|𝐩𝑗|𝐢1𝐢2; 0⟩ 

Note that 

⟨𝐫1𝐫2; 0|𝐩𝑗|𝐢1𝐢2; 0⟩ = ℏ𝐤𝑖𝑗𝑒
𝑖𝐤𝑖1⋅𝐫1𝑒𝑖𝐤𝑖2⋅𝐫2𝑒−𝑖

𝐸𝑖1+𝐸𝑖2
ℏ 𝑡 

And that 

⟨𝐟1𝐟2; 1𝐫𝜔𝜎|𝐀(�̂�𝑗)|𝐫1𝐫2; 0⟩

= √
ℏ

𝜋𝜖0

1

𝑐2
∫𝜔′ 𝑑𝜔′∫𝑑3𝐫′√Im 𝜖(𝐫′, 𝜔′)∑⟨𝐟1𝐟2; 1𝐫𝜔𝜎|𝐺𝛽𝛼

∗ (�̂�𝑗 , 𝐫
′, 𝜔′)𝑓𝛽

†(𝐫′, 𝜔′)|𝐫1𝐫2; 0⟩

𝛽

= √
ℏ

𝜋𝜖0

1

𝑐2
∫𝜔′ 𝑑𝜔′𝑒𝑖𝜔

′𝑡𝑒
𝑖
𝐸𝑓1+𝐸𝑓2

ℏ
𝑡
∫𝑑3𝐫′√Im 𝜖(𝐫′, 𝜔′) 𝛿(𝐫 − 𝐫′)𝛿(𝜔 − 𝜔′)

× ⟨𝐟1𝐟2|𝐺𝜎𝛼
∗ (�̂�𝑗 , 𝐫

′, 𝜔′)|𝐫1𝐫2⟩

= √
ℏ

𝜋𝜖0

1

𝑐2
𝜔𝑒𝑖𝜔𝑡𝑒𝑖

𝐸𝑓1+𝐸𝑓2
ℏ 𝑡√Im 𝜖(𝐫, 𝜔) ⟨𝐟1𝐟2|𝐺𝜎𝛼

∗ (�̂�𝑗 , 𝐫, 𝜔)|𝐫1𝐫2⟩

= √
ℏ

𝜋𝜖0

1

𝑐2
𝜔𝑒𝑖𝜔𝑡𝑒𝑖

𝐸𝑓1+𝐸𝑓2
ℏ 𝑡√Im 𝜖(𝐫, 𝜔) 𝐺𝜎𝛼

∗ (𝐫𝑗 , 𝐫, 𝜔)𝑒
−𝑖𝐤𝑓1⋅𝐫1𝑒−𝑖𝐤𝑓2⋅𝐫2  

Finally (approximating 𝐤𝑖𝑗 ≅ �̂�𝑘0): 

⟨𝐟1𝐟2; 1𝐫𝜔𝜎|𝐀 ⋅ 𝐩𝑗|𝐢1𝐢2; 0⟩

= √
ℏ

𝜋𝜖0

ℏ𝑘0
𝑐2
𝜔𝑒

𝑖(𝜔−
𝐸𝑖1+𝐸𝑖2−𝐸𝑓1−𝐸𝑓2

ℏ )𝑡
√Im 𝜖(𝐫, 𝜔)

× ∫𝑑3𝐫1∫𝑑
3𝐫2 𝐺𝜎𝑧

∗ (𝐫𝑗 , 𝐫, 𝜔)𝑒
𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2  

Giving 

𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎 =
𝑖

ℏ
𝑒√

ℏ

𝜋𝜖0

𝑣0
𝑐2
𝜔2𝜋𝛿 (𝜔 −

𝐸𝐢1 − 𝐸𝐟1 + 𝐸𝐢2 − 𝐸𝐟2
ℏ

)√Im 𝜖(𝐫, 𝜔)

×∑∫𝑑3𝐫1∫𝑑
3𝐫2 𝐺𝜎𝑧

∗ (𝐫𝑗 , 𝐫, 𝜔)𝑒
𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2

𝑗

 

 

Now, we want to find the final state of the electron pair: this is the reduced density matrix 

𝛒2el
(f) = Trph𝛒𝑓 =∑∑𝜌2el

(i) (𝐢1, 𝐢2; 𝐢1
′ , 𝐢2

′ )∑𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎𝑀𝐢1′ 𝐢2′→𝐟1′𝐟2′ ;𝐫𝜔𝜎
∗

𝐫𝜔𝜎

|𝐟1𝐟2⟩⟨𝐟1
′𝐟2
′ |

𝐢1,𝐢2
𝐢1
′ ,𝐢2
′

𝐟1𝐟2
𝐟1
′𝐟2
′

, (10) 

it is now our task to evaluate the sum ∑ 𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎𝑀𝐢1′ 𝐢2′→𝐟1′𝐟2′ ;𝐫𝜔𝜎
∗

𝐫𝜔𝜎 . It takes the form 

∑𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎𝑀𝐢1′ 𝐢2′→𝐟1′𝐟2′ ;𝐫𝜔𝜎
∗

𝐫𝜔𝜎

=
4𝛼

𝑐
𝑣0
24𝜋2𝛿 (𝜔𝐢2;𝐟2

𝐢1;𝐟1 −𝜔
𝐢′2;𝐟′2
𝐢′1;𝐟′1)

[
 
 
 
 
𝛿(𝐤𝑖2 − 𝐤𝑓2)𝛿(𝐤𝑖′2 − 𝐤𝑓′2)Im 𝐺𝑧𝑧(𝐤𝑖1 − 𝐤𝑓1, 𝐤𝑖′1 − 𝐤𝑓′1,𝜔)

+𝛿(𝐤𝑖′1 − 𝐤𝑓′1)𝛿(𝐤𝑖2 − 𝐤𝑓2)Im 𝐺𝑧𝑧(𝐤𝑖1 − 𝐤𝑓1 , 𝐤𝑖′2 − 𝐤𝑓′2, 𝜔)

+𝛿(𝐤𝑖1 − 𝐤𝑓1)𝛿(𝐤𝑖′2 − 𝐤𝑓′2)Im 𝐺𝑧𝑧(𝐤𝑖2 − 𝐤𝑓2 , 𝐤𝑖′1 − 𝐤𝑓′1, 𝜔)

+𝛿(𝐤𝑖1 − 𝐤𝑓1)𝛿(𝐤𝑖′1 − 𝐤𝑓′1)Im 𝐺𝑧𝑧(𝐤𝑖2 − 𝐤𝑓2 , 𝐤𝑖′2 − 𝐤𝑓′2, 𝜔)]
 
 
 
 

, (11) 
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Derivation of Eq. 11 

∑𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎𝑀𝐢1′ 𝐢2′→𝐟1′𝐟2′ ;𝐫𝜔𝜎
∗

𝐫𝜔𝜎

=
𝑒2

ℏ2
ℏ

𝜋𝜖0

𝑣0
2

𝑐2
 4𝜋2∑∫𝑑𝜔𝛿(𝜔 − 𝜔𝐢2;𝐟2

𝐢1;𝐟1)𝛿 (𝜔 − 𝜔𝐢′2;𝐟′2
𝐢′1;𝐟′1

)

𝜎

×∑∫𝑑3𝐫1∫𝑑
3𝐫2 𝑒

𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2

𝑗

∑∫𝑑3𝐫1
′∫𝑑3𝐫2

′ 𝑒
−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1

′

𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

𝑗′

×∫𝑑3𝐫
𝜔2

𝑐2
Im 𝜖(𝐫, 𝜔)𝐺𝜎𝑧

∗ (𝐫𝑗 , 𝐫, 𝜔)𝐺𝑧𝜎(𝐫, 𝐫𝑗′
′ , 𝜔)

⏟                            

Im 𝐺𝑧𝑧(𝐫𝑗,𝐫𝑗
′,𝜔)

 

Giving 

∑𝑀𝐢1𝐢2→𝐟1𝐟2;𝐫𝜔𝜎𝑀𝐢1
′ 𝐢2
′→𝐟1

′𝐟2
′ ;𝐫𝜔𝜎

∗

𝐫𝜔𝜎

=
4𝛼

𝑐
𝑣0
24𝜋2𝛿 (𝜔𝐢2;𝐟2

𝐢1;𝐟1 − 𝜔𝐢′2;𝐟′2
𝐢′1;𝐟′1

)∑∑∫𝑑3𝐫1∫𝑑
3𝐫2

𝑗′

∫𝑑3𝐫1
′∫𝑑3𝐫2

′

𝑗

× 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2 Im 𝐺𝑧𝑧(𝐫𝑗 , 𝐫𝑗′
′ , 𝜔𝐢2;𝐟2

𝐢1;𝐟1)𝑒
−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1

′

𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

 

The sums of integrals in the last term can be simplified  

∑∑∫𝑑3𝐫1∫𝑑
3𝐫2

𝑗′

∫𝑑3𝐫1
′∫𝑑3𝐫2

′ 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2Im 𝐺𝑧𝑧(𝐫𝑗 , 𝐫𝑗′
′ , 𝜔)𝑒

−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1
′

𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

𝑗

= ∫𝑑3𝐫1∫𝑑
3𝐫2∫𝑑

3𝐫1
′∫𝑑3𝐫2

′ 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2 Im 𝐺𝑧𝑧(𝐫1 , 𝐫1
′ , 𝜔)𝑒

−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1
′

𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

+∫𝑑3𝐫1∫𝑑
3𝐫2∫𝑑

3𝐫1
′∫𝑑3𝐫2

′ 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2 Im 𝐺𝑧𝑧(𝐫1 , 𝐫2
′ , 𝜔)𝑒

−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1
′

𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

+∫𝑑3𝐫1∫𝑑
3𝐫2∫𝑑

3𝐫1
′∫𝑑3𝐫2

′ 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2 Im 𝐺𝑧𝑧(𝐫2 , 𝐫1
′ , 𝜔)𝑒

−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1
′

𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

+∫𝑑3𝐫1∫𝑑
3𝐫2∫𝑑

3𝐫1
′∫𝑑3𝐫2

′ 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2 Im 𝐺𝑧𝑧(𝐫2 , 𝐫2
′ , 𝜔)𝑒

−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1
′

𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

= 𝛿(𝐤𝑖2 − 𝐤𝑓2)𝛿(𝐤𝑖′2 − 𝐤𝑓′2)∫𝑑
3𝐫1∫𝑑

3𝐫1
′ 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1Im 𝐺𝑧𝑧(𝐫1 , 𝐫1

′ , 𝜔)𝑒
−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1

′

+ 𝛿(𝐤𝑖′1 − 𝐤𝑓′1)𝛿(𝐤𝑖2 − 𝐤𝑓2)∫𝑑
3𝐫1∫𝑑

3𝐫2
′ 𝑒𝑖(𝐤𝑖1−𝐤𝑓1)⋅𝐫1Im 𝐺𝑧𝑧(𝐫1 , 𝐫2

′ , 𝜔)𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

+ 𝛿(𝐤𝑖1 − 𝐤𝑓1)𝛿(𝐤𝑖′2 − 𝐤𝑓′2)∫𝑑
3𝐫2∫𝑑

3𝐫1
′ 𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2Im 𝐺𝑧𝑧(𝐫2 , 𝐫1

′ , 𝜔)𝑒
−𝑖(𝐤𝑖′1−𝐤𝑓′1)⋅𝐫1

′

+ 𝛿(𝐤𝑖1 − 𝐤𝑓1)𝛿(𝐤𝑖′1 − 𝐤𝑓′1)∫𝑑
3𝐫2∫𝑑

3𝐫2
′ 𝑒𝑖(𝐤𝑖2−𝐤𝑓2)⋅𝐫2Im 𝐺𝑧𝑧(𝐫2 , 𝐫2

′ , 𝜔)𝑒
−𝑖(𝐤𝑖′2−𝐤𝑓′2)⋅𝐫2

′

= 𝛿(𝐤𝑖2 − 𝐤𝑓2)𝛿(𝐤𝑖′2 − 𝐤𝑓′2)Im 𝐺𝑧𝑧(𝐤𝑖1 − 𝐤𝑓1 , 𝐤𝑖′1 − 𝐤𝑓′1,𝜔)

+ 𝛿(𝐤𝑖′1 − 𝐤𝑓′1)𝛿(𝐤𝑖2 − 𝐤𝑓2)Im 𝐺𝑧𝑧(𝐤𝑖1 − 𝐤𝑓1 , 𝐤𝑖′2 − 𝐤𝑓′2, 𝜔)

+ 𝛿(𝐤𝑖1 − 𝐤𝑓1)𝛿(𝐤𝑖′2 − 𝐤𝑓′2)Im 𝐺𝑧𝑧(𝐤𝑖2 − 𝐤𝑓2 , 𝐤𝑖′1 − 𝐤𝑓′1, 𝜔)

+ 𝛿(𝐤𝑖1 − 𝐤𝑓1)𝛿(𝐤𝑖′1 − 𝐤𝑓′1)Im 𝐺𝑧𝑧(𝐤𝑖2 − 𝐤𝑓2 , 𝐤𝑖′2 − 𝐤𝑓′2, 𝜔) 

Substituting Eq. 11 into Eq. 10, changing sums to integrals and changing the integration 

variable from the initial wavevectors 𝐤𝑖 to the recoils 𝐪, gives the general result 

𝜌2el
(f)
(𝐤𝑓1𝐤𝑓2; 𝐤𝑓′1𝐤𝑓′2)

= ∫𝑑3𝐪1∫𝑑
3𝐪2∫𝑑

3𝐪1
′ ∫𝑑3𝐪2

′ 𝜌2el
(i)
(𝐤𝑓1 + 𝐪1, 𝐤𝑓2 + 𝐪2; 𝐤𝑓1

′ + 𝐪1
′ , 𝐤𝑓2

′ + 𝐪2
′ )

× 𝛿 (𝜔
𝐤𝑓2
′ ;𝐪2

′

𝐤𝑓1
′ ;𝐪1

′

−𝜔
𝐤𝑓2;𝐪2

𝐤𝑓1;𝐪1
)

[
 
 
 
 
 
 𝛿(𝐪2)𝛿(𝐪2

′ )Im 𝐺𝑧𝑧 (𝐪1, 𝐪1
′ , 𝜔

𝐤𝑓2;𝐪2

𝐤𝑓1;𝐪1)

+𝛿(𝐪2)𝛿(𝐪1
′ )Im 𝐺𝑧𝑧 (𝐪1, 𝐪2

′ , 𝜔
𝐤𝑓2;𝐪2

𝐤𝑓1;𝐪1)

+𝛿(𝐪1)𝛿(𝐪2
′ )Im 𝐺𝑧𝑧 (𝐪2, 𝐪1

′ , 𝜔
𝐤𝑓2;𝐪2

𝐤𝑓1;𝐪1)

+𝛿(𝐪1)𝛿(𝐪1
′ )Im 𝐺𝑧𝑧 (𝐪2, 𝐪2

′ , 𝜔
𝐤𝑓2;𝐪2

𝐤𝑓1;𝐪1)]
 
 
 
 
 
 

, (12) 

where here after the change of variables 

𝜔𝐤𝑓2;𝐪2
𝐤𝑓1;𝐪1 =

𝐸𝐤𝑓1+𝐪1 − 𝐸𝐤𝑓1 + 𝐸𝐤𝑓2+𝐪2 − 𝐸𝐤𝑓2
ℏ

, (13) 

Eq. (12) dramatically simplifies when considering an Isotropic medium, for which: 

Im 𝐺𝑧𝑧(𝐪, 𝐪
′, 𝜔) = (2𝜋)3𝛿(𝐪 − 𝐪′)Im𝐺𝑧𝑧(𝐪,𝜔), (14) 
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and, by considering the small-recoil and paraxial approximations. The simplified expression 

for the final density matrix reads 

𝜌2el
(f) (𝐤1, 𝐤2; 𝐤3, 𝐤4) = ∫𝑑

3𝐪Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)

[
 
 
 
 
 𝜌el

(i)(𝐤1 + 𝐪, 𝐤2; 𝐤3 + 𝐪, 𝐤4)

+𝜌el
(i)(𝐤1 + 𝐪, 𝐤2; 𝐤3, 𝐤4 + 𝐪)

+𝜌el
(i)(𝐤1, 𝐤2 + 𝐪;𝐤3 + 𝐪, 𝐤4)

+𝜌el
(i)(𝐤1, 𝐤2 + 𝐪;𝐤3, 𝐤4 + 𝐪)]

 
 
 
 
 

, (15) 

Derivation of Eq. (15) 

𝜌2el
(f)
(𝐤𝑓1𝐤𝑓2; 𝐤𝑓′1𝐤𝑓′2)

= ∫𝑑3𝐪1∫𝑑
3𝐪2∫𝑑

3𝐪1
′ ∫𝑑3𝐪2

′ 𝜌2el
(i)
(𝐤𝑓1 + 𝐪1, 𝐤𝑓2 + 𝐪2; 𝐤𝑓1

′ + 𝐪1
′ , 𝐤𝑓2

′ + 𝐪2
′ )

× 𝛿 (𝜔
𝐤𝑓2
′ ;𝐪2

′

𝐤𝑓1
′ ;𝐪1

′

− 𝜔
𝐤𝑓2;𝐪2

𝐤𝑓1;𝐪1
)

[
 
 
 
𝛿(𝐪2)𝛿(𝐪2

′ )𝛿(𝐪1 − 𝐪1
′ )Im 𝐺𝑧𝑧(𝐪1, 𝜔)

+𝛿(𝐪2)𝛿(𝐪1
′ )𝛿(𝐪1 − 𝐪2

′ )Im 𝐺𝑧𝑧(𝐪1, 𝜔)

+𝛿(𝐪1)𝛿(𝐪2
′ )𝛿(𝐪𝟐 − 𝐪1

′ )Im 𝐺𝑧𝑧(𝐪2, 𝜔)

+𝛿(𝐪1)𝛿(𝐪1
′ )𝛿(𝐪𝟐 − 𝐪2

′ )Im 𝐺𝑧𝑧(𝐪2, 𝜔)]
 
 
 
 

Finally, we have 

𝜌2el
(f) (𝐤1, 𝐤2; 𝐤3, 𝐤4) =

∫𝑑3𝐪Im 𝐺𝑧𝑧(𝐪,𝜔𝐤2,𝟎
𝐤1,𝐪)𝛿(𝜔𝐤2,𝟎

𝐤1 ,𝐪 − 𝜔𝐤4,𝟎
𝐤3,𝐪)𝜌2el

(i) (𝐤1 + 𝐪, 𝐤2; 𝐤3 + 𝐪, 𝐤4)

+∫𝑑3𝐪Im 𝐺𝑧𝑧(𝐪,𝜔𝐤2,𝟎
𝐤1,𝐪) 𝛿(𝜔𝐤2,𝟎

𝐤1,𝐪 − 𝜔𝐤4,𝐪
𝐤3,𝟎)𝜌2el

(i) (𝐤1 + 𝐪, 𝐤2; 𝐤3, 𝐤4 + 𝐪)

+∫𝑑3𝐪Im 𝐺𝑧𝑧(𝐪,𝜔𝐤2,𝐪
𝐤1,𝟎) 𝛿(𝜔𝐤2,𝐪

𝐤1,𝟎 − 𝜔𝐤4,𝟎
𝐤3,𝐪)𝜌2el

(i) (𝐤1, 𝐤2 + 𝐪; 𝐤3 + 𝐪,𝐤4)

+∫𝑑3𝐪Im 𝐺𝑧𝑧(𝐪,𝜔𝐤2,𝐪
𝐤1,𝟎) 𝛿(𝜔𝐤2,𝐪

𝐤1,𝟎 − 𝜔𝐤4,𝐪
𝐤3,𝟎)𝜌2el

(i) (𝐤1, 𝐤2 + 𝐪; 𝐤3, 𝐤4 + 𝐪)

 

Note that, under the small recoil approximation 

𝜔𝐤2,𝟎
𝐤1,𝐪 = 𝐪 ⋅

ℏ𝐤1
𝑚

= 𝐪 ⋅ 𝐯1 

𝜔𝐤2,𝟎
𝐤1,𝐪 − 𝜔𝐤4,𝟎

𝐤3,𝐪 = 𝐪 ⋅ (𝐯1 −𝐯3) 

etc. Replacing all 𝐯𝑖's with the carrier velocity 𝐯 we can factor out ∫𝑑3𝐪Im 𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯) and 

a constant 𝛿(0) term which falls in normalization, giving 

𝜌2el
(f) (𝐤1, 𝐤2; 𝐤3, 𝐤4) = ∫𝑑

3𝐪Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)

[
 
 
 
 
 𝜌2el

(i) (𝐤1 + 𝐪,𝐤2; 𝐤3 + 𝐪, 𝐤4)

+𝜌2el
(i) (𝐤1 + 𝐪, 𝐤2; 𝐤3, 𝐤4 +𝐪)

+𝜌2el
(i) (𝐤1, 𝐤2 + 𝐪; 𝐤3 + 𝐪, 𝐤4)

+𝜌2el
(i) (𝐤1, 𝐤2 + 𝐪; 𝐤3, 𝐤4 +𝐪)]

 
 
 
 
 

 

 

If the initial two-electron state is a pure state: 

𝛒2el
(𝑖) = |𝜓2el

(𝑖) ⟩⟨𝜓2el
(𝑖) |, (16𝑎) 

|𝜓2el
(𝑖) ⟩ = ∑ 𝜓2el

(𝑖) (𝐤1, 𝐤2)|𝐤1𝐤2⟩

𝐤1𝐤2

, (16𝑏) 

then the final two-electron density matrix can be written as the mixture 

𝛒2el
(𝑓) = ∫𝑑3𝐪𝑝𝐪 |𝜓rec

(𝑖) (𝐪)⟩⟨𝜓rec
(𝑖) (𝐪)|, (17) 

where the "recoiled" states are given by 
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|𝜓rec
(𝑖) (𝐪)⟩ =

1

√𝑁𝐪
∑ 𝜓2el

(𝑖) (𝐤1, 𝐤2)(|𝐤1 − 𝐪; 𝐤2⟩ + |𝐤1; 𝐤2 − 𝐪⟩)

𝐤1𝐤2

, (18𝑎) 

𝑁𝐪 = 2 + 2Re ∑ 𝜓2el
(𝑖)∗(𝐤1 + 𝐪, 𝐤2 − 𝐪)𝜓2el

(𝑖) (𝐤1, 𝐤2)

𝐤1𝐤2

, (18𝑏) 

Each recoiled state has a probability 

𝑝𝐪 =
𝑁𝐪Im𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯)

∫ 𝑑3𝐪𝑁𝐪Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)
, (19) 

Deriving Eq. (16-19) 
First, we find that, for a given recoil 𝐪: 

𝜌2el
(i) (𝐤1 + 𝐪,𝐤2; 𝐤3 + 𝐪,𝐤4)

+𝜌2el
(i) (𝐤1 +𝐪, 𝐤2; 𝐤3, 𝐤4 + 𝐪)

+𝜌2el
(i) (𝐤1, 𝐤2 + 𝐪;𝐤3 + 𝐪, 𝐤4)

+𝜌2el
(i) (𝐤1, 𝐤2 + 𝐪;𝐤3, 𝐤4 + 𝐪)

= [𝜓2el
(𝑖)(𝐤1 + 𝐪, 𝐤2) + 𝜓2el

(𝑖)(𝐤1, 𝐤2 +𝐪)] [𝜓2el
(𝑖)∗(𝐤3 + 𝐪,𝐤4) + 𝜓2el

(𝑖)∗(𝐤3, 𝐤4 + 𝐪)] 

Which looks like a pure state. We define this new "recoiled state" as  

|𝜓rec
(𝑖) (𝐪)⟩ =

1

√𝑁𝐪
∑ [𝜓2el

(𝑖) (𝐤1 + 𝐪, 𝐤2) + 𝜓2el
(𝑖) (𝐤1, 𝐤2 + 𝐪)] |𝐤1; 𝐤2⟩

𝐤1𝐤2

=
1

√𝑁𝐪
∑ 𝜓2el

(𝑖) (𝐤1, 𝐤2)(|𝐤1 − 𝐪;𝐤2⟩ + |𝐤1; 𝐤2 − 𝐪⟩)

𝐤1𝐤2

 

For this state to be normalized we demand that: 

1 = ⟨𝜓rec
(𝑖) (𝐪)|𝜓rec

(𝑖) (𝐪)⟩ =

=
2

𝑁𝐪
∑ 𝜓2el

(𝑖)∗(𝐤1,𝐤2)𝜓2el
(𝑖)(𝐤1, 𝐤2)

𝐤1𝐤2

+
2

𝑁𝐪
Re ∑ 𝜓2el

(𝑖)∗(𝐤1 + 𝐪, 𝐤2 − 𝐪)𝜓2el
(𝑖)(𝐤1, 𝐤2)

𝐤1𝐤2

 

giving 

𝑁𝐪 = 2 + 2Re ∑ 𝜓2el
(𝑖)∗(𝐤1 + 𝐪, 𝐤2 − 𝐪)𝜓2el

(𝑖) (𝐤1, 𝐤2)

𝐤1𝐤2

 

The recoiled state density matrix, for a given 𝐪 is 

𝛒rec
(𝑖) (𝐪) = |𝜓rec

(𝑖) (𝐪)⟩⟨𝜓rec
(𝑖) (𝐪)| 

Substituting into Eq. (15) we get 

𝛒2el
(f) = ∫𝑑3𝐪𝑁𝐪Im 𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯) |𝜓rec

(𝑖) (𝐪)⟩⟨𝜓rec
(𝑖) (𝐪)| 

Upon normalizing Tr𝛒2el
(f) = 1, we can write the final result 

𝛒2el
(f) = ∫𝑑3𝐪𝑝𝐪|𝜓rec

(𝑖) (𝐪)⟩⟨𝜓rec
(𝑖) (𝐪)| 

where the probabilities are 

𝑝𝐪 =
𝑁𝐪Im𝐺𝑧𝑧(𝐪, 𝐪 ⋅ 𝐯)

∫ 𝑑3𝐪𝑁𝐪Im 𝐺𝑧𝑧(𝐪,𝐪 ⋅ 𝐯)
 

 


