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Section I – Validity of the two-level system model 

In our research, we are interested in the possibility of using free electrons as a probe for 

quantum coherence in qubit systems. The measurements are made through electron energy loss 

spectroscopy (EELS), and we model the interaction as an interaction between the evanescent 

electric field of the free electron and the dipole moment of the two-level system (TLS). This model 

predicts that the electron can gain/lose a single quantum of energy while de-exciting/exciting the 

quantum TLS. In reality, the modeling of an emitter as a TLS frequently does not yield a good 

description, as a free electron beam scattering from atomic electrons can lose energy through a 

wide variety of phenomena. While an electron can excite a particular transition of interest through 

the mechanism outlined above, an electron can excite many additional transitions (such as core-

shell transitions). Beyond the atom undergoing many types of transitions, the electron can also 

lose energy by many different channels besides a collision with the emitter of interest. The electron 

can lose energy via Bremsstrahlung processes, as well as via collective excitations (photons, 

phonons, and plasmons).  

 



All these inelastic processes occur at a probability considerably smaller than unity for thin 

samples. The majority of the probability remains in electrons that do not undergo inelastic 

processes, also called the zero-loss peak (ZLP) in EELS. We are interested in EELS peaks that are 

related to a particular transition in the system (the “qubit” or “TLS” transition). We consider energy 

loss associated with other peaks in the EELS spectrum to be that of decoherence channels. Thus, 

in practice, whenever we measure an electron (after it passes through the sample) as having an 

energy that differs from 𝐸! or 𝐸! ± ℏ𝜔!, we ignore it. We consider only materials for which the 

qubit transition is separated in energy from the other inelastic processes. 

One concern is that different EELS peaks are not necessarily well-separated, especially if 

some are broad (such as the peaks associated with plasmons). These broad peaks may overlap the 

peak fitting the TLS transition. This problem is partially solved by using electrons in a 

superposition of two (or more) energy states, all spaced by ℏ𝜔!. In this case, we measure not the 

height of the peaks related to the TLS transition but the height difference between the two ZLPs 

(corresponding to the two initial energies of the electron) as they interfere with each other while 

interacting with the TLS. This interference between two initial energies relies on the coherence of 

the qubit and can significantly enhance the contrast in the measurements, as analyzed in the paper. 

Competing excitations, such as those of plasmon and phonon polaritons, have a very short 

coherence lifetime and therefore will not lead to the resulting interference between the two electron 

energies, i.e., will result in a relatively small change in the EELS spectra. Thus, we can neglect the 

decoherence channels, if the energy difference between the two ZLPs matches the qubit energy 

and assuming that the probabilities of the decoherence channels are considerably smaller than unity 

(not necessarily considerably smaller than the original spontaneous qubit transition). This idea is 

illustrated in Fig. 1. 



 

Fig 1. Schematic electron energy-loss spectrum (EELS) that highlights the electron 
transitions that can be controlled by coherently shaped free electrons. (a) The spectrum of an 
unshaped electron (electron wavefunction with Gaussian distribution of energy): the peak of the 
two-level system (TLS) excitation scales like |𝑔|" and can frequently be considerably smaller than 
that of the other processes, which we call “decoherence channels.” (b) The electron is shaped to 
have two different energies that can be thought of as two different zero-loss peaks (ZLPs). Their 
relative phase before the interaction creates a contrast in their height after the interaction that 
contains information about the state of the qubit. The contrast scales like |𝑔| if the qubit is in a 
coherent superposition state. The key to this enhancement is the interference of the shaped electron. 
Other contributions to the spectrum (here noted as decoherence channels), such as surface plasmon 
losses or peaks due to core-loss transitions [1], can be neglected when their probability is 
sufficiently small that they do not significantly alter the ZLP(s). 
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Section II – The quantum theory for the interaction of a free electron and a TLS 

In this section, we discuss the interaction of a free electron with a quantum TLS through 

the dipole interaction in a fully quantum mechanical manner. We develop the 1D Hamiltonian that 

was used to obtain the results in the main text. This 1D Hamiltonian is based on the paraxial 

approximation for the electron, which is justified in the limit where the initial energy of the electron 

is considerably greater than that of the TLS. 

The Hamiltonian consists of the free electron Hamiltonian (𝐻#), the TLS Hamiltonian 

(𝐻$%&), and the interaction Hamiltonian (𝑉): 

𝐻 = 𝐻! + 𝑉 = 𝐻' + 𝐻()* + 𝑉. (1) 

For a TLS with an energy gap of ℏ𝜔!, the Hamiltonian is represented by the Pauli matrix 𝜎+ so 

that	𝐻$%& =
ℏ-!
"
𝜎+ with 𝜎+ = |e⟩⟨e| − |g⟩⟨g|, where 𝑒 is the excited state and 𝑔 the ground state. 

The interaction part of the Hamiltonian couples the TLS dipole moment to the electric field 

associated with a moving point charge (electron) 𝑉 = −𝒅 ⋅ 𝑬. This interaction term is justified 

under the dipole approximation in which we assume that the bound electron wavefunction is tightly 

confined to the atomic nuclei.  The transition dipole operator is defined as 

𝒅 = ⟨e|𝑒𝒓|g⟩ ⋅ |e⟩⟨g| + ⟨g|𝑒𝒓|e⟩ ⋅ |g⟩⟨e| = <𝒅#.𝜎/ + 𝒅#.∗ 𝜎1=, (2) 

where 𝒅#. = 𝑑2𝒙A + 𝑑3𝒚A + 𝑑+𝒛D . In this notation, we assume that the transition dipole operator is 

purely off-diagonal, which typically occurs as a result of the inversion symmetry of atoms. For a 

relativistic (spin-less) electron, the free electron Hamiltonian was given by Klein and Gordon [2], 

𝐻# = 𝑐F𝑚"𝑐" + 𝒑"	. (3) 



We now simplify the Klein–Gordon Hamiltonian under the case in which we treat the electron 

under the paraxial approximation, which results from linearizing the dispersion relation of the 

electron around its central momentum. Stated more rigorously, we restrict the electron 

Hamiltonian to the space of functions of the form 𝜓 = 𝑒4𝒌𝟎⋅𝒓𝑓, where f is slowly varying (|∇𝑓| ≪

|𝑘𝑓|). In that case, the action of the electron Hamiltonian on the state is 

𝐻#𝜓 = 𝑐F𝑚"𝑐" − ℏ"∇"𝑒4𝒌𝟎⋅𝒓𝑓 ≈ 𝑒4𝒌𝟎⋅𝒓𝑐P𝑚"𝑐" + ℏ"𝒌𝟎" − 2𝑖ℏ"𝒌𝟎 ⋅ ∇𝑓. (4) 

Taylor expanding and noting that in relativity 9
:
= ;

<#
, we have 

𝑒4=!>>>>⃗ ⋅@⃗ T𝑐P𝑚"𝑐" + ℏ"𝒌𝟎" +
ℏ𝑐𝒌𝟎 ⋅ (−𝑖ℏ∇)

F𝑚"𝑐" + ℏ"𝒌𝟎"
U𝑓 = 𝑒4𝒌𝟎⋅𝒓(𝐸! − 𝑖ℏ𝒗 ⋅ ∇)𝑓. (5) 

We can replace the Hamiltonian with 𝐻# = −𝑖ℏ𝒗 ⋅ ∇, as they are the same in this space of states 

up to the identity. Physically, this approximation states that, regardless of the electron’s 

momentum, its velocity is v, which is a type of “no-recoil approximation.” We assume that the 

electron is moving on the z-axis and that the TLS is located at (0,0,0). We can then write the 

Hamiltonian as 

𝐻 = −𝑖ℏ𝑣𝜕+ +
ℏ𝜔!
2

𝜎+ + <𝒅#.𝜎/ + 𝒅#.∗ 𝜎1= ⋅ 𝑬(𝑟A, 0, 𝑧), (6) 

where 𝑬(𝑟A, 0, 𝑧) is the electric field at the location of the TLS (0,0,0) as a function of the 

electron's position (𝑟A, 0, 𝑧) as given by the Maxwell equations. The motion of the electron and 

the position of the TLS are shown in Fig. 2 



 

Fig. 2. Schematic of the interaction between a free electron and an atom. The electron has 
coordinates  𝑥 = 𝑟A, 𝑦 = 0 and moves along the z-axis with speed 𝑣 so that 𝑧 = 𝑣𝑡. The atom is 
taken as stationary and situated at the origin (0,0,0). 

 

 

Section III – Derivation of the scattering matrix and analysis of the interaction strength 

In this section, we find an approximate solution to the scattering matrix resulting from the 

Hamiltonian in Eq. (6) through the Magnus expansion. We discuss the structure of the complete 

scattering matrix and show that an approximate form of it is highly accurate under the most realistic 

conditions in electron–TLS interactions. To solve the problem, it is convenient to move into the 

interaction picture in which 

𝑉B(𝑡) = 𝑒4
C!
ℏ D𝑉𝑒14

C!
ℏ D , (7) 

where 𝐻! = 𝐻# + 𝐻$%&. Using the identity, 𝑒;DE$𝑓(𝑧)𝑒1;DE$ = 𝑓(𝑧 + 𝑣𝑡), we find 

𝑉B(𝑡) = <𝒅𝜎/𝑒4-!D + 𝒅∗𝜎1𝑒14-!D= ⋅ 𝑬(𝑟A, 0, 𝑧 + 𝑣𝑡). (8) 

The S-matrix, 𝑆 = 𝑇𝑒1
%
ℏ ∫ G'(D)JD

(
)(  (with T the usual time-ordering operator) can now be evaluated 

according to the Magnus expansion [3]: 



𝑆 = 𝑇𝑒1
4
ℏ∫ G'(D)	JD

(
)( = 𝑒∑ M*(N)(

*+, , (9) 

where the Magnus expansion operators Ω= are given by nested commutators of 𝑉B at different 

times. For example, the first two terms of the expansion are given as 

⎩
⎪
⎨

⎪
⎧ ΩO(∞) = −

𝑖
ℏl 𝑑𝑡

N

1N
𝑉B(𝑡),

Ω"(∞) =
1
2 m−

𝑖
ℏn

"

l l 𝑑𝑡O𝑑𝑡"	[𝑉B(𝑡O), 𝑉B(𝑡")]
D,

1N

N

1N
,

…

(10) 

where higher orders ΩP can be calculated in the same way. The first order is completely analytical, 

but the general structure can be analyzed by understanding the form of the Magnus operators. For 

the first order, we write the integral and perform the exchange of variables 𝑥 = 𝑧 + 𝑣𝑡.   

ΩO(∞) = −
𝑖
ℏ𝑣

l 𝑑𝑥
N

1N
m𝒅#.𝜎/𝑒

4-!
; (21+) + 𝒅#.∗ 𝜎1𝑒

14-!; (21+)n ⋅ 𝑬(𝑟A, 0, 𝑥). (11) 

To simplify this further, we now define the electron momentum ladder operators: 

𝑏 = 𝑒1
4-!
; + , 	𝑏/ = 𝑒

4-!
; + . (12) 

These are operators that lower (or raise) the electron momentum by ℏ-!
;

. In the regime where the 

kinetic energy of the electron is significantly larger than the energy gap of the TLS, this translates 

to an energy lowering (raising) operator for the electron wavefunction that changes the electron’s 

energy by that of the TLS (ℏ𝜔!). With this definition in place, ΩO is given as 

ΩO(∞) = −
𝑖
ℏ𝑣 T𝑏𝜎/𝒅#. ⋅ 𝐹

{𝑬(𝑟A, 0, 𝑥)} v
𝜔!
𝑣 w + 𝑏

/𝜎1𝒅#.∗ ⋅ 𝐹∗{𝑬(𝑟A, 0, 𝑥)} v
𝜔!
𝑣 wU , (13) 

where 𝐹 denotes the Fourier transform. The Fourier components of the electric field of a relativistic 

point charge have a well-known expression, and therefore, we can find ΩO exactly as [4] 



ΩO(∞) = −
𝑖𝑒𝜔!

2𝜋𝜀!𝛾ℏ𝑣"
m𝑑2𝐾O m

𝜔!𝑟A
𝑣𝛾 n + 𝑖𝑑+𝐾! m

𝜔!𝑟A
𝑣𝛾 n

1
𝛾	n

(𝑏𝜎/) − 

−
𝑖𝑒𝜔!

2𝜋𝜀!𝛾ℏ𝑣"
m𝑑2𝐾O m

𝜔!𝑟A
𝑣𝛾 n − 𝑖𝑑+𝐾! m

𝜔!𝑟A
𝑣𝛾 n

1
𝛾n
(𝑏/𝜎1), (14)	 

where 𝐾Q represents modified Bessel functions of the second kind and 𝛾 = O
RO1S#

, with 𝛽 = ;
<
. To 

the first order in the Magnus expansion, we can write the scattering matrix as 

𝑆 = 𝑒14T.UV-/.∗U-V)W, (15) 

where the interaction strength parameter 𝑔 given by 

𝑔 =
𝑒𝜔!

2𝜋𝜀𝛾ℏ𝑣" m𝑑2𝐾O m
𝜔!𝑟A
𝑣𝛾 n + 𝑖𝑑+𝐾! m

𝜔!𝑟A
𝑣𝛾 n

1
𝛾	n .

(16) 

An analysis of the commutation relation between the TLS ladder operators shows that the general 

form of the 𝑆 matrix is given by  

𝑆 = 𝑒14TXUV-/X∗U-V)W14YV$ , (17) 

where 𝐺 is receiving contributions from the odd orders of the Magnus expansion and 𝐾 from the 

even orders. This can readily be seen from the commutation relations of the Pauli operators, e.g., 

[𝜎/, 𝜎1] = 𝜎+ , [𝜎+ , 𝜎±] ∝ 𝜎±. This leads to the cyclical behavior in the operators ΩP appearing in 

the Magnus interaction. To estimate the efficiency of using the expansion, we need to estimate 

integrals of the form O
ℏ/P!

∫ 𝑑𝑡O…𝑑𝑡P𝑉BP(𝑧 + 𝑣𝑡). To obtain an estimate, we look at the electric 

field of a point charge in the non-relativistic limit: 

𝑉B ≈
𝑒𝑑𝑟A

4𝜋𝜀!(𝑟A" + (𝑧 + 𝑣𝑡)")
\
"
=

𝑒𝑑
4𝜋𝜀!𝑟A"

⋅
1

T1 + (𝑧 + 𝑣𝑡)𝑟A"
"
U

\
"
=

𝑒𝑑
4𝜋𝜀!𝑟A"

⋅ 𝑉B]^_'`a^b`c'aa. (18)
 



To make the integral dimensionless we change variables 𝑥 = +/;D
@0

, 𝑑𝑡 = J2
@0;

.  

ΩP ∝
1
𝑛! m

𝑒𝑑
4𝜋ℏ𝑣𝜀!𝑟A

n
P

⋅ [dimensionless	integrals] ≈
(3 ⋅ 101\)P

𝑛!
⋅ [dimensionless	integrals], (19) 

where we took 𝑒𝑟A ≈ 𝑑 and 𝑣 ≈ 10d	m/s. We see that, in general, each order in the Magnus 

expansion will be three orders of magnitude smaller, which already justifies our approximation 

that neglects 𝐾. Furthermore, because the dimensionless integrals are oscillatory and each higher-

order term oscillates faster, the discrepancy between higher-order terms in the Magnus expansion 

should be even larger than expected from a naïve scaling based on Eq. (19). We corroborated this 

argument with numerical estimates of the higher-order terms for realistic parameters. 

The parameter 𝑔 is a dimensionless parameter that quantifies the interaction strength. It is 

useful to define 𝑔 ≡ |𝑔|𝑒4e1, where |𝑔| is the magnitude of the interaction strength and 𝜙. its 

phase. This coupling, as can be seen from Eq. (16), is electron-velocity-dependent. To obtain an 

estimate of the velocity of the free electron in order to obtain the strongest interaction possible, we 

consider atomic dipoles oriented along 𝑥 and 𝑧. We work in the non-relativistic limit (as we will 

see, the strongest interaction is achieved at velocities well below the speed of light, for which 𝛾f ≈

1). For a dipole along the 𝑥 axis, we have 

𝑔 = −
𝑖𝑒𝜔!𝑑2
2𝜋𝜀ℏ𝑣" 𝐾O v

𝜔!𝑟A
𝑣 w =

𝑎
𝑣" 𝐾O m

𝑏
𝑣n ,

(20) 

E.
E;
= − "g

;2
𝐾O v

U
;
w − gU

;3
𝐾Oh v

U
;
w = 0 ⇒ − U

;
𝐾Oh v

U
;
w − 𝐾O v

U
;
w = 0. (21)

This can be evaluated numerically and results in 𝑣i9D ≈
U

O.\\
= @0-!

O.\\
. The same analysis can be 

applied to a dipole pointing only along the 𝑧 axis and results in 𝑣i9D ≈
U

O.kk
= @0-!

O.kk
. Therefore, the 

optimal velocity depends on the spatial structure of the TLS and will be within the range 



𝑟A𝜔!
1.55 < 𝑣i9D <

𝑟A𝜔!
1.33 .

(22) 

Typically, in the optical range ℏ𝜔! there will be few electron volts and 𝑟A will be a few nanometers. 

We can write for simplicity 𝜔! = 𝑎 ⋅ 'l
ℏ
, 𝑟A = 𝑏 ⋅ nm. It follows then that the optimal velocity of 

the free electron is governed by 

𝑎 ⋅ 𝑏 ⋅ 0.32%	𝑐 < 𝑣i9D < 𝑎 ⋅ 𝑏 ⋅ 0.38%	𝑐. (23) 

For realistic parameters, the optimal velocity will always be a few percent of the speed of light, 

and therefore, the approximation 𝛾 = 1 is well justified. 

As in the traditional PINEM analysis, it is convenient to work in the regime where the 

electron wavefunction is a coherent superposition of discrete energies with a small Gaussian 

broadening (much smaller than ℏ𝜔!). Thus, we may idealize the electron as a truly discrete 

superposition of energies evenly spaced by the TLS energy. In this notation, it is convenient to 

define the electron state as |𝜓#⟩ = ∑ 𝐶=|𝐸! + 𝑘ℏ𝜔!⟩= . In this notation, the electron ladder 

operators are defined as 

𝑏|𝐸⟩ = |𝐸 − ℏ𝜔!⟩, 𝑏/|𝐸⟩ = |𝐸 + ℏ𝜔!⟩. (24) 

With all these developments, both the definition of the ladder operators and the neglect of the 𝐾-

terms, we may finally arrive at the main result presented in our main manuscript, in which the S-

matrix is expressed as 

𝑆 = cos|𝑔| − 𝑖 sin|𝑔| <𝑒4e1𝑏𝜎/ + 𝑒14e1𝑏/𝜎1=. (25) 

 

 



Section IV – The evolution of the TLS before the interaction with the electron 

In this section, we discuss the evolution of the state of the TLS before the interaction with 

the electron. As the interaction with the electron is very brief (fs time scale) as compared to typical 

decoherence time scales, we can consider the electron–TLS interaction as instantaneous as 

compared to the TLS excitation and relaxation times. 

Let us suppose that a laser field or any other means of coherent manipulation acts on the 

atom at time 𝜏 = 0. Hence, before the action of the laser field, the atom has the following density 

matrix on the basis |𝑔⟩, |𝑒⟩. 

𝜌(𝜏) = v1 0
0 0w	

(𝜏 < 0). (26) 

This represents the atom being in the ground state. At time 𝜏 = 0, the atom interacts with a laser 

pulse and is excited to some state described by a density matrix 𝜌, 

𝜌(𝜏) = m1 − 𝑝 𝑞
𝑞∗ 𝑝n	(𝜏 = 0). (27) 

At this point, the atom goes through relaxation and decoherence from the coupling to the 

environment, as described by Lindblad’s master equations [5], and the resulting density matrix as 

a function of delay 𝜏 is given by 

𝜌(𝜏) = � 1 − 𝑝𝑒1
4
5, 𝑞𝑒4-!m𝑒1

4
5#

𝑞∗𝑒4-!m𝑒1
4
5# 𝑝𝑒1

4
5,

� , (28)

where 𝑇O and 𝑇" are the longitudinal and transverse relaxation times (or as sometimes called 

relaxation and decoherence times) and typically 𝑇" ≪ 𝑇O; ℏ𝜔! is the energy difference between 

the ground and the excited states of the qubit. 



Section V – TLS interaction with a general electron wavefunction 

In this section, we investigate the resulting EELS spectra of a general electron wavefunction 

after the interaction with the TLS. We consider a wavefunction composed of a superposition of 

energies separated by ℏ𝜔!. A general wavefunction for the electron can be written as a sum of 

wavefunctions with different central energies. We take the initial wavefunction as 

|𝜓4P⟩ =�𝐶P|𝐸P⟩ ⊗ (𝑎|g⟩ + 𝑒4e6𝑏|e⟩)
P

, (29) 

where 𝑎 and 𝑏 are positive real numbers satisfying  𝑎" + 𝑏" = 1 and |𝐸P⟩ is defined as |𝐸! +

𝑛ℏ𝜔!⟩. The final wavefunction |𝜓inD⟩, is given as |𝜓inD⟩ = 𝑆|𝜓4P⟩ so that 

|𝜓inD⟩ =�𝐶P|𝐸P⟩ ⊗ <𝑎|g⟩ + 𝑒4e6𝑏|e⟩=
P

⋅ cos|𝑔|	

−𝑖 ⋅�𝐶P/O|𝐸P⟩ ⊗ <𝑒4e1𝑎|e⟩= ⋅ sin|𝑔|
P

	

−𝑖 ⋅�𝐶P1O|𝐸P⟩ ⊗ <𝑒4Te61e1W𝑏|g⟩= ⋅ sin|𝑔|
P

. (30) 

What we measure eventually in the EELS spectrum is the probability of the electron to be in a 

specific energy, 𝑃P = |⟨𝐸P|𝜓inD⟩|", where 

⟨𝐸P|𝜓inD⟩ = |g⟩ ⋅ �𝑎𝐶P ⋅ cos|𝑔| − 𝑖𝑒4(e61e1)𝑏𝐶P1O ⋅ sin|𝑔| 		

+|e⟩ ⋅ �𝑒4e6𝑏𝐶P ⋅ cos|𝑔| − 𝑖𝑒4e1𝑎𝐶P/O ⋅ sin|𝑔|  (31) 

and its modulus-squared is given as 

𝑃P = |𝐶P|"cos"|𝑔| + |𝑏𝐶P1O|" sin"|𝑔| + |𝑎𝐶P/O|" sin"|𝑔|	

+2Re¢𝑖 cos|𝑔| sin|𝑔| <𝐶P𝐶P1O∗ 𝑎𝑏𝑒4(e11e6) + 𝐶P𝐶P/O∗ 𝑏𝑎𝑒14(e11e6)=£. (32)	 



Expressed in terms of density matrix (as defined in Eq. (27)) elements, we obtain the spectrum for 

a general atom (not necessarily an atom in coherent superposition): 

𝑃P = |𝐶P|"cos"|𝑔| + 𝑝|𝐶P1O|" sin"|𝑔| + (1 − 𝑝)|𝐶P/O|" sin"|𝑔|	

+2𝑅𝑒¢𝑖 cos|𝑔| sin|𝑔| <𝐶P𝐶P1O∗ 𝑞𝑒4(e1) + 𝐶P𝐶P/O∗ 𝑞∗𝑒14(e1)=£. (33)	 

Calculating the average energy gain for the initially symmetric electron (|𝐶P| = |𝐶1P|): 

¥𝐸.g4P¦ = ℏ𝜔! sin"|𝑔| (2𝑝 − 1) + 𝑖 ℏω!cos|𝑔| sin|𝑔| <𝑞𝑒4(e1)∑𝐶P𝐶P1O∗ − 𝑞∗𝑒14(e1)∑𝐶P𝐶P/O∗ =. (34) 

The expression ∑𝐶P𝐶P1O∗  is the expectation value of the ladder operator 𝑏. Approximating for 

small 𝑔, it is convenient to write 

¥𝐸.g4P¦ = ℏ𝜔!|𝑔|"(2𝑝 − 1) + 𝑖ℏ𝜔!|𝑔|<𝑞𝑒4(e1)⟨𝑏⟩ − 𝑞∗𝑒14(e1)⟨𝑏/⟩=. (35) 

The second term comes from the interference between the different electron energies (as it contains 

the off-diagonal elements of the density matrix). This term decays as the system goes through 

decoherence. For example, we can look at time 𝜏 for which 𝜏 ≪ 𝑇O and assume that 𝑇" ≪ 𝑇O, and 

then, the decoherence will be expressed as a decay of the interference term: 

𝑃P(𝜏) = |𝐶P|"cos"|𝑔| + |𝑏𝐶P1O|" sin"|𝑔| + |𝑎𝐶P/O|" sin"|𝑔|	

+2𝑅𝑒¢𝑖 cos|𝑔| sin|𝑔| <𝐶P𝐶P1O∗ 𝑎𝑏∗𝑒4e + 𝐶P𝐶P/O∗ 𝑏𝑎∗𝑒14e=£𝑒1
m
$# . (36)	 

We consider two simple configurations of electron states. First, we consider an unshaped 

electron, for which 𝐶P = 𝛿P,!. This corresponds to the case in many standard EELS and CL 

microscopy experiments. The electron can either gain/lose energy because of the interaction with 

the TLS or remain unchanged: 

𝑃1O = (1 − 𝑏") sin"|𝑔|, 𝑃! = cos"|𝑔|, 𝑃O = 𝑏" sin"|𝑔| . (37) 



From the EELS spectrum, we can conduct the population statistic of the qubit. This term has 

contributions only from incoherent terms, as the electron cannot undergo interference with itself, 

and therefore, when the system goes through relaxation the solution will be 

𝑃1O = m1 − 𝑏"𝑒1
m
$,n sin"|𝑔|, 𝑃! = cos"|𝑔|, 𝑃O = 𝑏" sin"|𝑔|𝑒1

m
$, . (38) 

By repeatedly measuring the interaction in this way, we can obtain the EELS spectrum for different 

time delays 𝜏 and extract information, such as the energy gaps and lifetimes of atoms. However, 

this includes no information about the coherent structure of the probed system. This measurement 

scheme is presented in the main text’s Fig. 2. To observe coherent properties, we need to use an 

electron with multiple energy levels distanced from each other by the energy gap of the atomic 

system. The different energies of the electron interfere during the interaction and create observable 

changes in the EELS spectrum. The simplest case to check is an electron with two energies 

distanced by ℏ𝜔! with a defined phase between them. Such an electron can be created 

approximately by using a PINEM interaction. It should be noted that it is not necessary to use 

exactly the electron that has specifically two energies. To observe quantum interference, the only 

requirement is that the electron has at least two energies distanced by the energy of the qubit 

transition ℏ𝜔!. However, the simplest and most elegant way to demonstrate the concept is to use 

a bi-energetic electron.  

The wavefunction of such an electron can be written as 

|𝜓#⟩ =
1
√2

mª𝐸! −
1
2ℏ𝜔!« + 𝑒

4e7 ª𝐸! +
1
2ℏ𝜔!«n .

(39) 

The resulting EELS spectra will contain four peaks: 
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⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑃

1O"
=
1
2 cos

"|𝑔| +
1
2𝑎

" sin"|𝑔| − cos|𝑔| sin|𝑔| 𝑎𝑏 ⋅ sin<𝜙g − 𝜙# − 𝜙.=

𝑃O
"
=
1
2
cos"|𝑔| +

1
2
|𝑏|" sin"|𝑔| + cos|𝑔| sin|𝑔| 𝑎𝑏 ⋅ sin<𝜙g − 𝜙# − 𝜙.=

𝑃
1\"
=
𝑎"

2
sin"|𝑔|

𝑃\
"
=
𝑏"

2 sin
"|𝑔|

, (40) 

Since the coupling is typically weak, we can approximate and obtain 

¬
𝑃1 =

1
2
− |𝑔||𝑎𝑏| sin<𝜙g − 𝜙# − 𝜙.=

𝑃/ =
1
2
+ |𝑔||𝑎𝑏| sin<𝜙g − 𝜙# − 𝜙.=

. (41) 

This is an interesting expression, as the phase 𝜙# is controlled by the shaped electron, the phase 

𝜙. depends on the internal structure of the TLS, such as the size of the dipole in each direction, 

and the phase 𝜙g depends on the coherent superposition of the TLS. Thus, we can set a precise 

phase for the electron wavefunction to measure the phase difference of the TLS states. 

Alternatively, we can measure the relative size of the different dipole components 𝑑2 and 𝑑+ by 

measuring 𝜙.. Another notable property of this expression is that the contrast in the resulting 

EELS signal is proportional to |𝑔|, as opposed to |𝑔|".   

The value |𝑎𝑏| corresponds to the size of the off-diagonal elements of the density matrix in 

the general case. These terms typically decay exponentially with the characteristic time 𝑇". We 

propose a possible scheme to measure 𝑇": A qubit is prepared in an initial superposition |𝜓⟩ =

O
√"
<|𝑒⟩ + 𝑒4e6|𝑔⟩=, then go through decoherence for a duration 𝜏, before being probed by a bi-

energetic electron. We then measure the change in the EELS peaks (which is proportional to |𝑔|) 

and extract 𝑇" by repeating this measurement for different time delays, according to the formula: 



Δ𝑃 = 𝑃/ − 𝑃1 = 𝑒−
𝜏
𝑇2|𝑔| sin<𝜙g − 𝜙# − 𝜙.= . (42) 

We would also like to exploit this direct dependence on |𝑔| to measure the relaxation time 

𝑇O. For this, we discuss a simplified case that assumes 𝑇O ≫ 𝑇" (a more general scenario can be 

solved by extending the same approach). In this case, the density matrix of the atom shortly after 

the excitation is well approximated by 	𝜌(𝜏) = ¯1 −
|𝑎"|"𝑒

1 4
5, 0

0 |𝑎"|"𝑒
1 4
5,

°. On this qubit, we 

can perform a 𝜋/2 pulse before the interaction with the electron using another laser pulse, which 

corresponds to the rotation of the qubit's state around the 𝑥-axis in the Bloch sphere by 90 degrees. 

As this corresponds to applying a unitary transformation on the qubit's state 	𝑈 = O
√"
v 1 −𝑖
−𝑖 1 w, 

the resulting density matrix of the qubit after this operation is given by: 

𝜌q
"
(𝜏) = 𝑈𝜌(𝜏)𝑈/ = ²

1
2 𝑖 m

1
2 −

|𝑎"|"𝑒
1 m$,n

−𝑖 m
1
2
− |𝑎"|"𝑒

1 m$,n
1
2

³ . (43) 

The size of the off-diagonal element is now  O
"
− |𝑎"|"𝑒

1 4
5,, and so the interaction with bi-energetic 

electron will result in changes of the EELS peaks proportional to |𝑔| which decay with the factor 

of 𝑇O, and so 𝑇O can be extracted with relatively lower EELS resolution: 

Δ𝑃 = 𝑃/ − |𝑔| m1 − 2|𝑎"|"𝑒
1 m$,n sin v

𝜋
2 − 𝜙# − 𝜙.w .

(44) 

The above results all discuss how the electron qubit interaction can be used in order to extract 

information about the qubit, but Eq. (35) shows that, in general, we can obtain an electron energy 

gain and loss that is proportional to |𝑔| rather than to |𝑔|" when ⟨𝑏⟩ ≠ 0, presenting how the 

reliance on quantum interference is used here not only to extract information about the coherent 



phases of the TLS but also to intensify the energy transfer between the electron and the TLS. This 

kind of enhanced interaction will lead eventually to an enhanced CL signal, as the electron transfers 

this energy to the excitation of the TLS, which will eventually result in a stronger emission of 

radiation. It should be noted that a PINEM-generated electron without free space propagation or 

other amplitude manipulation will not have an energy gain/loss proportional to |𝑔|. To show this, 

we recall the wavefunction of a PINEM modulated electron [6] with a laser frequency equal to 

𝜔 = 𝜔!/𝑙: 

|𝜓#⟩ =�𝑒4eP𝐽P(2|𝑔rBs:t|)|𝐸! + ℏ𝑛𝜔⟩
P

. (45) 

The expectation value of the 𝑏 operator will always be zero according to the Bessel functions 

identity: 

�𝐽P(𝑥)𝐽P1u(𝑥) = 0
P

. (46) 

Nevertheless, the EELS signal still contains features proportional to |𝑔|, such as the height 

difference between EELS peaks. For the average gain to change, or to obtain an enhancement of 

the energy transfer, the initial electron must be shaped by amplitude modulation, not only by phase 

modulation. This can be achieved by having a distance of free space propagation after a PINEM 

interaction. The PINEM induces only phase modulation, but then the electron dispersion in free 

space transforms the phase modulation into amplitude modulations. Similar enhancements, based 

on the modulation of free electrons, were proposed for the first time using a semiclassical analysis 

in [4]. We show how our quantum description of the interaction conforms to part of the results of 

the semiclassical theory [4] and also generalizes related work on the quantum klystron [7]. The 

semiclassical formalism used in these papers can describe the enhancement of the interaction with 



qubits due to the phase modulation of the electrons but cannot describe the resulting EELS 

spectrum as it relies on quantum interference, which is crucial for quantum measurements. Another 

technique for enhancing the CL due to the interaction with free electrons is described in Section 

VI. 

The most attractive quantum systems for a proof of concept are those with large transition 

dipole moments, such as perovskite nanocrystals. According to Eq. (16), we can estimate the 

interaction strength for perovskites. We consider a typical transition dipole moment of 𝑑 ≈ 288 

D, excited state energy ℏ𝜔! ≈ 3eV, electron speed chosen to be optimal according to Eq. (22) is 

equal to ~7% the speed of light (1.25 keV), and distance from the qubit 𝑟A = 6	nm. Notice that 

the even for relatively such slow electron, the energy of the electron is much larger than the energy 

of the qubit and the paraxial approximation is expected to hold. For these parameters, the 

interaction strength is approximately |𝑔| ≈ 0.1. The typical dipole of the molecules is usually 

considerably smaller. For example, the dipole moment of a water molecule is 𝑑 ≈ 2.0	𝐷. In this 

case, the interaction constant equals |𝑔| ≈ 0.7 ⋅ 101\. The resulting coupling parameter |𝑔| ≈ 0.1, 

can be readily detected in typical EELS detectors. Such interaction conditions enable a temporal 

resolution of about a hundred femtoseconds and a spatial resolution reaching 1.4 nm at these 

electron energies [8]. 

The standard deviation of the EELS features after 𝑁 measurements can be estimated as O
√s	

. 

This means that the relative error in the interference measurements (where the measured result is 

~|𝑔|) approximately equals O
.√s

⋅ 100%. To achieve a standard deviation of 1% of the result, in 

the case of the strongest interaction of |𝑔| = 0.1 we need approximately 10v repetitions, i.e., one 

million electrons, with current laser repetition rates, this implies an integration time of ~1 s. Note 



that standard EELS systems and current PINEM experiments are performed at higher velocities 

(e.g., 80 keV electrons show an optimal coupling parameter |𝑔| = 0.025, well within current 

detection capabilities). Nevertheless, highly sensitive EELS also exist at low acceleration voltages. 

[9] 

 

Section VI – Observation of qubits emitting radiation superradiantly  

In this section, we consider the weak interaction (|𝑔| ≪ 1) of a free electron with a group of 

𝑁 non-interacting qubits close to each other and consider how their superradiant behavior can be 

observed through the EELS signal. In this case, the scattering matrix 𝑆 will have the form 

𝑆 =»𝑆4
4

=»𝑒14T.V-% U/.∗V)% U-W
4

, (47) 

where 𝜎±4  are Pauli matrices for the 𝑖th qubit. If the qubits are prepared in the collective state |𝜓w⟩ 

and they interact with a monoenergetic electron |𝐸!⟩,  in the case of weak interaction strength 

(|𝑔| ≪ 1) we can approximate the resulting final state |Ψx⟩ to second order in |𝑔|: 

|Ψx⟩ = 𝑆|𝐸!⟩|𝜓w⟩ ≈ 

≈ (1 − 𝑁|𝑔|")|𝐸!⟩|𝜓w⟩ − 𝑖 ½� 	𝑔𝜎/4
4

|𝐸! − ℏ𝜔!⟩|𝜓w⟩ +�	𝑔∗𝜎14
4

|𝐸! + ℏ𝜔!⟩|𝜓w⟩¾ . (48) 

Then, the resulting spectrum has the form 
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⎨

⎪⎪
⎧ 𝑃! = 1 − 𝑁|𝑔|"

𝑃/ = |𝑔"|�¥𝜓w¿𝜎14 ¿𝜓w¦
4

= |𝑔|" ⋅ T
2¥𝐸ynU4Dz¦
ℏ𝜔!

+
𝑁
2
U

𝑃1 = |𝑔"|�¥𝜓w¿𝜎/4 ¿𝜓w¦
4

= −|𝑔|" ⋅ T
2¥𝐸ynU4Dz¦
ℏ𝜔!

−
𝑁
2U

, (49) 

where 𝑃! is the probability that the energy of the electron will not be changed, 𝑃/ is the probability 

that an electron’s energy will increase on ℏ𝜔!, and 𝑃1 is the probability that an electron’s energy 

will decrease on ℏ𝜔!. Then, the average energy gain equals  

¥𝐸{|^`(𝜏)¦ = ℏ𝜔!(Δ𝑃) = ℏ𝜔!|𝑔|"
4¥𝐸}~�^�a¦
ℏ𝜔!

, (50) 

where ¥𝐸}~�^�a¦ is the average energy of the superradiant qubits. The intensity of superradiant 

emission is connected with ¥𝐸}~�^�a¦ [10]: 

𝐼a~�'��|]^|`�(𝜏) = −
𝑑¥𝐸}~�^�a(𝜏)¦

𝑑𝑡 . (51) 

Hence, by measuring the gain for different time delays and using Eq. (52), we can reconstruct the 

superradiant emission of the qubits.  

Eq. (50) shows that the electron states with energy gain/loss are entangled with qubit states 

raised symmetrically. This informs us that, even if we did not pre-excite the qubits as suggested in 

the measurement scheme, the interaction with the electron results in an (at least partly) symmetric 

state. Such a state, as we know, given that the qubit–qubit interactions are sufficiently weak and 

the qubits are sufficiently close, will emit superradiantly [10]. This type of superradiant emission 

is a form of coherent enhancing of the CL signal. 

 



Section VII – Extracting the local density of photonic states (LDOS) 

In this section, we discuss how LDOS can be extracted from the interaction with free 

electrons. In the case of qubits with weak non-radiative relaxation, 𝑇O is directly related to the 

qubit’s spontaneous emission rate 𝛾 = 1/𝑇O and is influenced by its optical environment – the 

local density of optical states (LDOS). An emitter at a location 𝒓! and oriented along direction 𝑧 

has [9] 

𝛾 =
𝜔!
ℏ𝜀!

|𝒅|"𝜌+(𝒓!, 𝜔!) =
4𝜔!"

𝜋ℏ𝜀!𝑐"
|𝒅|"Im{𝐺++(𝒓!, 𝒓!, 𝜔)}, (52) 

where 𝐺++(𝒓!, 𝒓!, 𝜔) is the 𝑧𝑧 component of the Green function and 𝜌+(𝒓!, 𝜔!) is the LDOS. 

Typically, 𝛾 is measured by optically exciting a group of emitters in an area and measuring the 

resulting emission as a function of time [11]. Indirect measurement is through the spectrum [11], 

where the broadening of the peak depends on the lifetime (competing with other processes of 

incoherent broadening). These techniques are limited by their spatial resolution due to the optical 

wavelength and often require many emitters to collect sufficient signal.  

Advances in CL enable measurement of the LDOS with deep sub-wavelength resolution 

using an electron probe. More recent advances use time-resolved CL to achieve a direct 

measurement of 𝑇O at such deep-subwavelength resolutions [12, 13]. The use of shaped-electron–

qubit interactions poses an alternative means of measuring the LDOS. Its relative advantage is the 

femtosecond time resolution that arises from the durations of the electron pulses and laser pulses 

in our scheme. 

 

 



Section VIII – Measurement of a qubit state 

In this section, we discuss further the scheme proposed in Section III in the main text for 

measuring the complete qubit state on the Bloch sphere using coherently shaped free electrons. 

Eq. (44) provides the resulting EELS spectrum of a bi-energetic electron interacting with a qubit 

in general coherent superposition. The height difference between the two main peaks is given by 

Δ𝑃 = (𝑃/ + 𝑃1)|𝑔| sin(𝜃g) sin(𝛷) , (53) 

where Φ = 𝜙g − 𝜙# − 𝜙. and 𝜃g , 𝜙g are the angles describing the qubit location on the Bloch 

sphere (Fig. 3 in the main text). By scanning on different electron phases, one can find the phase 

𝜙# for which Δ𝑃 is maximal; in this phase, the condition sin(Φ) = 1 is achieved and 𝜙g is 

extracted. Then, by measuring Δ𝑃 we conclude |𝑔| sin(𝜃g). This method, however, gives an 

inconclusive answer to the question about the qubit state, as the function sin(𝜃g) leaves an 

ambiguity concerning whether the qubit is in the upper or lower half of the Bloch sphere. To solve 

this, one needs to look at the other side lobes in the EELS spectrum, which correspond to the 

energies 𝐸/ + ℏ𝜔! (gain lobe) and 𝐸1 − ℏ𝜔! (loss lobe), as they are not affected by quantum 

interference. If the gain lobe is higher, then the qubit was in the lower half of the Bloch sphere 

(meaning that without quantum interference, it will mostly "give" energy to the electron) and 

otherwise in the upper half. The drawback of this method is that the height of the side lobes is 

proportional to |𝑔|", increasing the required sensitivity of the EELS measurement or, alternatively, 

increasing the number of repetitions required to obtain a measurement. A possible means of 

bypassing this drawback is to "flip" the qubit 90 degrees around the x-axis using conventional 

coherent control methods (for example, by performing an additional 𝜋/2  pulse before the 

interaction with the electron) and then measure again using the same method, by combining the 



measurement result from the two measurements we can conclude the exact location on the Bloch 

sphere as illustrated in Fig. 3. This technique uses only measurements of probability differences 

proportional to |𝑔|, however, it requires an additional laser pulse, increasing the measurement's 

complexity.  

 

 

Fig. 3. Determining the exact location on the Bloch sphere using an additional 𝝅/𝟐	pulse. The 
first measurement leaves ambiguity about the qubit's location on the Bloch sphere; the green circles 
represent the two options we cannot distinguish between them. After performing an additional 𝜋/2 
pulse and measuring again, we yet again get two options that we cannot distinguish between (blue 
circles), but by matching the two measurements, we conclude the full state of the qubit. 

 

Section IX – The S matrix formalism 

In this section, we discuss the S matrix formalism and how it can be exploited to calculate 

more complicated interactions. In the previous sections, we derived the scattering matrix for the 

interaction of a free electron and a qubit. The most general expression takes the form: 

𝑆ynU4D = 𝑒14TXUV-/X∗U-V)W14YV$ . (54) 

Analysis of the interaction between free electrons and quantized light fields gives a similar 

scattering matrix as shown in [14], 

𝑆rBs:t = 𝑒14T.Ug-/.∗U-gW, (55) 

𝜋/2	 pulse 



The resemblance is not surprising, as we can conclude from the Magnus expansion or other 

perturbative expressions that in the most general case the scattering matrix should be given as  

exponentiation of the sum of the relevant creation and annihilation operators (in an energy-

conserving manner) and their commutation relations. One of the advantages of presenting the 

interaction in a scattering matrix form is the ability to calculate the interaction of a single electron 

wavefunction with multiple non-interacting systems by composing (see Fig. 4) the scattering 

matrices. Since the subsystems are non-interacting and the electron ladder operators are 

commuting, the exponent in the final scattering matrix is the sum of the exponents of the scattering 

matrices. This approach can be used to calculate the interaction of the electron with multiple qubits 

(as done in Section VI) or calculate more exotic interactions such as chain of consecutive PINEM 

and qubit interactions. Other types of interactions can also be calculated using a similar formalism 

(Fig. 4). 

 

Fig. 4. Calculating chain of interactions. The electron goes through a mixture of different 
interactions such as qubit-electron and PINEM interactions. Every interaction is described by a 
scattering matrix 𝑆. To calculate the final state of the electron, we need to compose the scattering 
matrices. 
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Section X – Comparison to typical EELS theory 

In this section, we present the conceptual differences between the standard EELS theory 

and our model. Specifically, we show that the standard EELS theory coincides with our model 

when a quantum two-level system is initially in the ground state. However, when the quantum 

two-level system is initially in the coherent superposition state, the standard EELS theory cannot 

provide the correct prediction. The deviation arises from the fact that in standard EELS, the energy 

loss is formulated in terms of the susceptibility of the target, which is calculated assuming the 

target is initially in its ground state. Therefore, our results can be seen as a version of the EELS 

theory in which the target is initially in a non-equilibrium, time-varying state. This difference is of 

course not small, leading to energy-gain and interference effects which enable the scheme and 

ideas presented in our work. 

Typically, in EELS theory, the energy loss of the electron interacting with the system 

depends on the system’s multipolar polarizability (or alternatively susceptibility), which describes 

the system’s response to the external field. For example, for a spherically symmetric system, the 

energy loss can be expressed as [15]: 

Γ(𝜔) =
4𝛼𝑐
𝜋𝑣"

� �
v𝜔𝑣w

"u

(𝑙 + 𝑚)! (𝑙 − 𝑚)!
𝐾Q" v

𝜔𝑟A
𝑣 w 𝐼𝑚{𝛼u(𝜔)}

u

Q�1u

N

u�O

, (56) 

where: 

𝐼𝑚{𝛼u(𝜔)} = 𝛼"u/O
𝑙𝜀(𝜔) − 1

𝑙𝜀(𝜔) + 𝑙 + 1
, (57) 

which is the sphere’s non-retarded multipolar polarizability of order 𝑙.  



Consider a quantum two-level system in a general state described by a density matrix with 

non-zero off-diagonal elements: 

𝜌g = T 1 − 𝑝 𝑞𝑒4-!D

𝑞∗𝑒14-!D 𝑝
U . (58) 

 The dipole polarization of the system in the case of non-zero off-diagonal elements exist even 

without an external electric field (thus acting on the electron analogously to an external AC field): 

𝒅(𝒕) = 𝑇𝑟�𝜌g𝒅𝒆𝒈  = 𝑇𝑟[𝜌g𝜎/]𝒅 = 2𝑅𝑒�𝑞𝑒4-!D 𝒅. (59) 

Hence, the system cannot be fully described by the polarizability because the dipole moment of 

the TLS has an imposed initial time variation, which is not purely induced by the electron, as 

would be the case in the standard EELS theory. Such imposed initial time variation maps to the 

off-diagonal elements of the initial TLS density matrix. In our paper, those off-diagonal elements 

can change the interaction substantially by using shaped electrons. The way for how to measure 

such elements is one of the key suggestions in our paper.  

In the case where the TLS is initially in the ground state, so that its dipole moment is purely 

induced by the electron, our results are in correspondence with the standard EELS theory. In 

particular, let us show that our formalism reproduces Eq. (56) in the absence of initial quantum 

coherence in the TLS. To see that, we consider only the first order of the multipolar expansion, 

𝑙 = 1, since we are interested in dipole interactions, and 𝛼O(𝜔) should coincide with the 

polarizability of a point particle in the case of 𝑑2 = 𝑑3 = 𝑑+ = 𝑑 [11]: 

𝛼4�(𝜔) = 𝛿4�
𝑑"

ℏ
Ê

1

(𝜔! − 𝜔) −
𝑖𝛾
2
+

1

(𝜔! + 𝜔) +
𝑖𝛾
2
Ë . (60) 



For positive frequencies (related to energy loss), Eq. (56) reduces to: 

Γ(𝜔) =
4𝛼𝑐
𝜋𝑣"

⋅
𝜔"𝑑"

ℏ𝑣"
⋅

𝛾
2

(𝜔! − 𝜔)" +
𝛾"
4

Ì𝐾!" v
𝜔𝑟A
𝑣 w + 𝐾O" v

𝜔𝑟A
𝑣 wÍ . (61) 

We see that the energy loss has resonance in the two-level system transition frequency 𝜔 = 𝜔!, 

and is broadened by the finite lifetime of the excited state. Our formalism does not capture this 

broadening since we treat the two-level system in a more idealistic manner (this broadening will 

typically be undetectable in the EELS interaction because of the incoherent energy width of the 

initial electron, also called the zero-loss peak width).  

  Now to find the probability of energy loss, we integrate over the frequencies assuming that 

the resonance is sharp enough so the Bessel’s function can be taken out of the integral: 

𝑃::%& = l𝑑𝜔Γ(𝜔) ≈
4𝛼𝑐𝜔!"𝑑"

ℏ𝑣�
Ì𝐾!" v

𝜔!𝑟A
𝑣 w + 𝐾O" v

𝜔!𝑟A
𝑣 wÍ . (62) 

In our case, this probability in the case where 𝑑+ = 𝑑A = 𝑑, is given according to Eqs. (16) and 

(25) (modified to cgs units, in the non-relativistic case 𝛾 = 1), we can see that: 

𝑃 = sin"(|𝑔|) ≈ |𝑔|" =
4𝛼𝑐𝜔!"𝑑"

ℏ𝑣�
Ì𝐾!" v

𝜔!𝑟A
𝑣 w + 𝐾O" v

𝜔!𝑟A
𝑣 wÍ = 𝑃::%&. (63) 

To conclude this section, we found a direct correspondence between our theory and the standard 

EELS approach in the case when the system is incoherent (in the. Sense of zero off-diagonal 

density matrix elements) and in the limiting case of weak interaction (|𝑔| ≪ 1). 

 Regarding the strength of the interaction, it is worth noting that for systems with larger 𝑔 

(as discussed in the main text), our approach goes beyond the first-order perturbative approach of 



the electron-material interaction. In this case, our approach generalized beyond Eq. (63) even in 

the ground state limit. 
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