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Reviewer Reports on the Initial Version: 

Referee #1 (Remarks to the Author): 
 
The paper presents two algorithms for finding continued fraction representations of fundamental 
constants. The algorithms are numerical and therefore provide conjectures rather than formal proofs 
of the identities. The first algorithm (Meet-in-the-Middle algorithm) is based on an optimized 
enumeration of RHS and LHS of the formulas, matching these values, and subsequent validation with 
higher precision. The second algorithm (Descent and Repel) is based on a gradient descent 
optimization procedure. Using these algorithms, the paper provides a set of conjecture identities on 
fundamental constants, some of which are claimed to be new. 
 
On the positive side, leveraging automation to generate new mathematical properties is a very 
promising and interesting area. However, the paper fails to make a strong contribution to this field. 
 
- The problem that is being studied is elementary, and is not representative of the real complexity of 
most mathematical problems. This is problematic, as the paper claims to be a step in the path of 
using algorithms to "unveil mathematical structure", and "play the role of intuition of great 
mathematicians in the past, providing leads to new mathematical research". More precisely, the 
search space in the problem of finding PCFs is very small, which leads to exhaustive approaches 
working quite well. This is in stark contrast with most mathematical problems, where interesting 
properties have to be found in much larger search spaces (and are also hard to formalize). 
 
- The paper could still make contributions with large impact while remaining specific to the 
considered problem. For example, finding more efficient ways of computing fundamental constants 
using PCFs, finding relations between constants, etc... The paper remains instead speculative on 
those problems (lots of conditionals that these will be possible in the future) but does not make any 
concrete contributions towards these more impactful problems. 
 
- On the algorithmic side, the contributions are not strong enough, with the two proposed 
approaches being a variant of exhaustive search (with discretization of the search space), and 
gradient descent. In the way they are used, these are also quite specific to the problem of finding 
PCFs, and it is unclear how these could generalize (e.g., to problems with larger search space). 
 
- It is unclear what the authors exactly mean by "new" conjecture. In fact, most conjectures in Table 
4 are labeled as "new and proven" (e.g., 4 / (pi - 2)), while the proof in Appendix F.2 is often a mere 
specialization of Gauss’s continued fraction. This should not be considered as a new result. 
 
- The presentation of the algorithmic part can be significantly improved; for example: 
- In Section 4, it is mentioned that "we empirically observed that all minima are global, and their 
errors are zero. Therefore any GD process will result in a solution with L = 0". This needs more 
justification. 
- It is mentioned that repel mechanism is used to increase the search space, and thus "the 
probability of finding a match in space". In light of the above comment, do all initial conditions lead 
to a solution? 
- The paragraph after Equation 7 is unclear, and its logic should be re-visited: Unclear why the 
dimensionality of the manifold is relevant to the discussion, unclear whether GD refers to vanilla 
gradient descent or to the version with discretization — especially since the last sentence in the 



 

paragraph infers a property on the problem with integer constraints. 
- What are x and y axes in Figure 4. 
- Motivation of Descent and repel. It is mentioned that MITM-RF is not "scalable" — mention more 
explicitly to which parameters it is desired to scale up. 
 
 
Referee #2 (Remarks to the Author): 
 
Dear Editors, 
 
I read the submission 
 
"The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants" 
By: Raayoni et al 
MS: 2020-04-07825 
 
with great interest. 
 
The paper attempts to generate new identities, specifically polynomial continued fractions, by 
generating large sets of potential candidates and then using a gradient-descent optimization to zoom 
in "correct" ones by checking to hundreds of digits of precision. 
Consequently, many correct expressions are found, and impressively, new conjectures have been 
raised, some of which have been proven since the appearance of the paper on ArXiv and several 
more still open. 
 
As stated in the appendix and the conclusions, this exercise has prompted an interactive website (in 
the spirit of PolyMath, GIMP, etc,) www.RamanujanMachine.com 
that has inspired the mathematics community to prove some of the new conjectures. 
 
I am very sympathetic to this experimental approach to mathematics using the best resources of 
today: computer algebra and machine-learning. 
I therefore recommend the article for publication in Nature subject to the following revisions: 
 
- It would be good to include a discussion on why PCFs are chosen (out of the myriad of possible 
mathematical structures) for the experimentation and why this is a perfectly adapted problem to 
their philosophy. An excellent summary of the subject is 
 
Bowman and J. Mc Laughlin, Polynomial continued fractions, Acta Arithmetica, 103(4) (2002), 329–
342 
 
and should be cited. 
 
- In Sec 2 for Related Works, it might be worth citing explorations in supervised and unsupervised 
machine-learning (very much in the spirit of this paper in attempting to find structure and generate 
new conjectures, and not in the style of ATP) have been applied to study of 
the physical laws 
"Discovering Physical Concepts with Neural Networks", 
Raban Iten et al, PHYSICAL REVIEW LETTERS 124, 010508 (2020); 
 
"Deep-Learning the Landscape", by Y.-H. He 
https://arxiv.org/abs/1706.02714, Phys.Lett.B 774 (2017) 564-568 
 
and number theory 
 
"Machine Learning meets Number Theory: The Data Science of Birch- Swinnerton-Dyer", L. 
Alessandretti, A. Baronchelli, Y.-H. He 
https://arxiv.org/abs/1911.02008 
 
- Eq (5): Can the author give a brief account of the type (or full list) of the polynomials \alpha, \beta, 
\gamma, \delta as well as the function f_i (e.g. what does i index? how many such function are 



 

tried?) that was used in the search? How exhaustive was it? Also, please present an idea of the 
running time and on what machine. 
 
- Could the authors comment on the success of generating PCFs for algebraic (e.g. Golden ratio) 
versus transcendental constants (e.g. Pi); do they differ? This would be substantial interest to the 
number theory community. 
 
- The Descent&Repel algorithm needs to be clarified (very much line with the comment above) 
* Move the comment about the variables to be optimized coming from 
\alpha, \beta, \gamma, \delta, as coefficients in these polynomials to just below Eq (7), before 
saying there are d of these. What is the typical number of d? i.e., what are the degrees of the 
polynomials considered? Presumably, Fig 4, where d = 2, is only a schematic illustration. 
 
* Why does repulsion help? i.e., why shouldn't one consider integer solutions to the coefficients 
which are close together in solution space? 
* Write the integer-round loss function along side with {\cal L} 
and explain how the 2 are used alternatingly 
 
* in step 1 of the algorithm, what is x_t? presumably \mu is step size and x_t denote the d variables 
and L is script-L? 
 
* In Fig 4, the colour-legend needs to be explained. Why is there no red? Which Log-error is used? 
the integer-round one or the one 
in Eq 7. What are (x,y) ? 
 
- A scope of the constants used in the search algorithm (LHS of Eq 5) should be listed explicitly, i.e., 
which constants (pi, e, Catalan, etc) have been searched, and which have produced good hits. This is 
particularly relevant to Table 2. Are there any in table which did get a hit and thus a conjecture? 
 
- Small typographical errors such as: 
* All equations and footnotes (e.g. footnote 5) need to be punctuated; 
* The quotation marks are all wrongly type-set; make sure to use 
` instead of ' for the beginning of the quote in LaTeX. 
* Top left box of Figure 2, is that supposed to be PCF? 
 
 
Referee #3 (Remarks to the Author): 
 
A. This is a seminal paper describing two very efficient 
algorithms to generate intriguing conjectures with 
far-reaching potential applications. 
 
B. While the LLL and PSQL were used in an ad hoc way before, 
the systematic and unified approach described here is very novel 
and significant. 
 
C. Very valid and the authors share all their ample data and 
output in their web-site for the benefit of the mathematical 
world. 
 
D. Since this is mathematics, the standards are much higher 
than in the physical scientist, and all their conjectures 
are virtually certain, even those still awaiting a formal proof. 
 
E. Perfect 
 
F. The references should be carefully copy-edited. 
e.g. (put please check everything) 
 
Ref. 18: the authors' names are reversed and they 



 

should include first names (or at least first initial) 
 
Ref. 20: A=b -> A=B 
 
Ref. 45: ditto (and also the title is wrong) 
 
Ref. 60: ditto 
 
G. See above, otherwise perfect 
 
H. Very well-written, lucid, and engaging. A true 
tour-de-forice 

 

Author Rebuttals to Initial Comments: 

Referee #1 (Remarks to the Author): 

The referee wrote- 
The paper presents two algorithms for finding continued fraction representations of 
fundamental constants. The algorithms are numerical and therefore provide conjectures 
rather than formal proofs of the identities. The first algorithm (Meet-in-the-Middle algorithm) 
is based on an optimized enumeration of RHS and LHS of the formulas, matching these 
values, and subsequent validation with higher precision. The second algorithm (Descent and 
Repel) is based on a gradient descent optimization procedure. Using these algorithms, the 
paper provides a set of conjecture identities on fundamental constants, some of which are 
claimed to be new. 

 
On the positive side, leveraging automation to generate new mathematical properties is a 
very promising and interesting area. 

 
Reply- 
We thank the referee for highlighting some of the novelty of our work and finding it 
promising. 

 
The referee wrote- 
However, the paper fails to make a strong contribution to this field. 

 
Reply- 
While we value the response and input, we respectfully disagree regarding the contributions 
of the previous version of the manuscript to the field. Our manuscript provided new formulas 
that were previously unknown, and whose origin (in terms of the mathematical structure they 
result from) is yet to be understood. These formulas include representations of the Catalan’s 
constant and Apéry’s constant presented in Table 5. 

 
Some of the conjectures we found with the algorithms have led to new mathematical research, 
as shown, for example, in [arXiv:2004.00090] by Dougherty-Bliss and Zeilberger. They 
developed our formulas into generalized expressions with richer mathematical structure and 
also presented proofs for these expressions. 

 
Having said that, we also very much understand the referee’s point of view. The previous 
version of our manuscript was not written with the goal of emphasizing specific contributions 
to mathematics. It was more focused on the concept of automated conjecturing, and automatic 

https://arxiv.org/abs/2004.00090v3
https://arxiv.org/search/math?searchtype=author&amp;query=Dougherty-Bliss%2C%2BR
https://arxiv.org/search/math?searchtype=author&amp;query=Zeilberger%2C%2BD


 

generation of fundamental constant representations. 
 
Therefore, we updated the manuscript with two significant additions, which both focus on 
demonstrating specific contributions to mathematics. The most important new result added in 
the manuscript was inspired by the referee’s suggestion to pursue new efficient ways of 
computing fundamental constants. In fact, we have found a continued fraction representation 
of the Catalan constant that manages to beat the current record for efficient computation. This 
new  result  is  explained  in  further  detail  below,  alongside  a  comparison  to  the relevant 



 

literature. There is also a new section in the main text, a new section in the appendix, and a 
new figure - all explained below. 

 
We believe that our manuscript is made stronger and better with the newly added results and 
are grateful to the referee for the comments and suggestions (especially for the direction to 
find more efficient ways of computing fundamental constants, which we did not consider before 
the review). By showing new specific contributions to the computation of the Catalan constant 
and its irrationality measure, we are now able to better showcase the cycle that we discuss in 
this work: from automatic conjecturing - providing human researchers with new leads for 
research - to substantially assisting in making research advancements. 

 
We thank the referee for all the comments that helped us to improve our manuscript. A point- 
by-point response is provided below. 

 
The referee wrote- 
- The problem that is being studied is elementary, and is not representative of the real 
complexity of most mathematical problems. This is problematic, as the paper claims to be a 
step in the path of using algorithms to "unveil mathematical structure", and "play the role of 
intuition of great mathematicians in the past, providing leads to new mathematical research". 
More precisely, the search space in the problem of finding PCFs is very small, which leads 
to exhaustive approaches working quite well. This is in stark contrast with most 
mathematical problems, where interesting properties have to be found in much larger search 
spaces (and are also hard to formalize). 

 
Reply- 
The search space of PCFs is, actually, quite large in terms of the wide areas of mathematics 
it can cover and the many special functions it connects to. Most special functions that are 
ubiquitous in so many fields have PCF representations - these include all trigonometric 
functions, exponentials, Bessel functions, generalized hypergeometric functions, the Riemann 
zeta function, and many other important functions such as erf and log. Moreover, any infinite 
sum can be converted into a continued fraction, while the other direction is not true as many 
PCFs that cannot be written as infinite sums (we now provide examples of both cases in 
Appendix Section G, and discuss them in the new Section 5.3 of the main text). 

 
We are not the first ones to notice the importance of PCFs in this respect. See, for example, 
the reference on PCFs suggested by Referee #2 [Bowman and Mc Laughlin, Polynomial 
continued fractions, Acta Arithmetica, 103, 329 (2002), our new reference 16]. Referee #2 also 
mentions that PCFs are a good fit “for the experimentation and why this is a perfectly adapted 
problem to their philosophy.” 

 
Thanks to the suggestions and comments of the referees, we revised the introduction to better 
motivate the exploration of PCFs. (we also revised Appendix Section C to point to open 
questions in this area related to our findings). 

 
From a computational point of view, PCFs have a cardinality of Aleph0, and it is thus possible 
to enumerate over them, which makes them a good starting point for our approach. So in that 
sense, PCFs strike a good balance to serve as a proof-of-concept, being a countable space, 
yet wide enough to catch many of the interesting mathematical objects. 



 

Having said the above, it is also worthy to note that although the results we bring are of PCFs, 
our algorithms are not restricted to a single structure. In fact, the algorithms we share online 
are designed to enable using any mathematical structure that can be represented in a 
parameterized and countable sequential manner. For instance, in the MITM-RF algorithm, we 
wrote the code implementing the LHS so that it can be chosen to be any parametric function 
(with a countable parameter space). Moreover, our MITM-RF algorithm now supports using 
any parametric function to generate the sequences of the continued fractions (this is a more 
complicated change to the code in comparison with the LHS, and enables searches of 
structures beyond PCFs). The same MITM-RF strategy also works with other countable 
mathematical structures that are not related to continued fractions at all. 
We revised the section on the MITM-RF algorithm to explain these options in the algorithm. 

 
The referee wrote- 
- The paper could still make contributions with large impact while remaining specific to the 
considered problem. For example, finding more efficient ways of computing fundamental 
constants using PCFs, finding relations between constants, etc... The paper remains instead 
speculative on those problems (lots of conditionals that these will be possible in the future) 
but does not make any concrete contributions towards these more impactful problems. 

 
Reply- 
We thank the referee for his/her remarks and suggestions. This comment by the referee has 
helped us to significantly improve the outlook and prospects that our manuscript presents, and 
we are grateful for that. 
Following this comment, we investigated how our results compare to existing methods of 
efficient computation of fundamental constants. As a result, we are glad to say that we found 
new PCF formulas of Catalan’s constant that surpass the best records in two problems: 

 
(1) The efficiency of formulas that compute the Catalan constant is defined by the number of 
digits found per term, normalized by the polynomial degree used in multiplications during the 
computation of each term (this normalization relates to the computation time of each such 
term). This definition is relevant for the efficiency of the state-of-the-art algorithms for the 
Catalan constant and other constants, as can be seen implemented in the y-cruncher project 
[new reference 72]. The record normalized rate was achieved in a formula by Pilehrood [new 
reference 70]. We found several PCFs that beat this record and present them in a new figure 
(Fig. 5a), and in Tables 7 and 8 in the new Appendix Section G. 

 
(2) While the previous result is interesting from a computational point of view, a more 
fundamental mathematical definition of computation efficiency is related to the Diophantine 
approximation of a number. There, the goal is finding the rational number with the smallest 
denominator of any required precision. The relation between the size of the denominator and 
the acquired precision is given by the Liouville–Roth approximation exponent that is used as 
a measure of irrationality of a fundamental constant. 
Specifically,  for  each  constant  𝑋𝑋,  the  approximation  exponent  is  defined  as  the largest 
constant 𝜇𝜇  for which there  exists  a converging sequence of  rational numbers    𝑝𝑝

 
𝑞𝑞 

satisfying 

|𝑋𝑋 − 𝑝𝑝| < 𝑞𝑞−𝜇𝜇. 

𝑞𝑞 



 

The logic in this definition is to find the most “efficient” series of rational numbers 𝑝𝑝
 

𝑞𝑞 
that 

converges to the constant. Here “efficient” means finding the rational number with the smallest 
possible denominator 𝑞𝑞 for any required precision of computing the constant 𝑋𝑋. The smaller 
the denominator relative to the precision, the larger 𝜇𝜇 is going to be. The record value of 𝜇𝜇 for 
the Catalan constant was ~0.524, found in a 2003 paper [reference 11] and proven in 2016 
[new reference 78]. The 2016 paper also presented a conjecture for a larger 𝜇𝜇 of ~0.554. 
We found a PCF that surpasses this record, finding 𝝁𝝁~0.567 (the comparison is presented in the new 
Fig. 5b). This PCF is presented in Table 8 row 5 and sets the new record for the approximation exponent 
of the Catalan constant by an explicit series. 

 
The above results are covered in greater detail in the updated manuscript in the new Section 
5.3. 

 
To summarize the changes about efficient calculations of the Catalan constant, we would like 
to say that this investigation, which resulted from the referee’s suggestion, clearly strengthens 
the impact of our manuscript. This comment led to improvements in several aspects of our 
manuscript, and we are grateful to the referee for it. 
We find these results very exciting and hope the referee will also share our excitement. 

 
Additional info about the underlying mathematical structure 
Although it is not the focus of our work, it is interesting to explain the underlying structure that 
enabled finding the (complicated) PCFs that achieve the record results. Our MITM-RF 
algorithm found several new PCF results for the Catalan constant (Table 5) that we managed 
to generalize to an infinite family of PCFs. We found that the PCFs in this family are related 
through a lattice structure of path-invariant matrices [such path-invariant matrices were first 
used for other applications by Bill Gosper in unpublished work; generalizing the algebra of 
Wilf–Zeilberger pairs]. The lattice structure that we found from this generalization enabled us 
to reduce the space of enumeration in the MITM-RF algorithm and construct specialized PCFs 
that achieved faster convergence rates and the record result for the approximation exponent 
(as shown in Figs. 5a&b). Such results are exciting in the context of our work because they 
demonstrate how the computer-based approach can lead to complicated results that may be 
difficult to address without computer algorithms (see in Table 8 the polynomials of order >20 
with coefficients of >30 digits). These complicated PCFs are precisely the ones that contribute 
to research on the computation of the Catalan constant and its Diophantine approximation. 
While the underlying algebraic structure is not the focus of our work, if the referee recommends 
doing so, we can further elaborate on it in the manuscript. 

 
Another specific contribution to mathematics 
Apart from the new contribution that we mentioned above, we also completely revised Section 
5.1 (Correspondence with the Mathematical Community) to discuss a new idea by the 
Zeilberger group that followed from our work and was recently put on arXiv [now our reference 
20 -- the direct link is arxiv.org/abs/2004.00090 -- most recent update on arXiv from May 26]. 
The work by Zeilberger shows a beautiful example of the contribution our work already started 
having. This work also explicitly cites our manuscript as the inspiration - citing from their paper: 
“Inspired by the recent pioneering work, dubbed “The Ramanujan Machine” by Raayoni et al. 
[6], we (automatically) [rigorously] prove some of their conjectures regarding the exact values 

https://arxiv.org/abs/2004.00090


 

of some specific infinite continued fractions, and generalize them to evaluate infinite families 
…” 

 
To summarize the response to this comment, we copy part of the new Section 5.1 here: 
“… A very recent example of this successful correspondence is the work done by Zeilberger's 
group [19], generalizing and proving part of the conjectures that appeared in the earlier arXiv 
version of our work [64] (see Appendix Section F.3). This new contribution that appeared as a 
consequence of our algorithms succeeded not only in proving part of our results, but also in 
creating infinite families of new conjectures through a new algorithm. Their method provides 
the proof as an inherent part of the discovery, thus the results are actually corollaries rather 
than conjectures. Therefore, [19] can be viewed as a successful case study of algorithms that 
combine ACG and ATP. 

Such algorithms are important also because they complement automatic conjecturing 
methods, which discover formulas that still need a proof. Once proven by algorithms, the 
formulas can be automatically taken and used to enrich the modern “integral books” (such as 
Maple or Wolfram Mathematica) to assist further research efforts. Such an example from their 
paper is the elegant formula 
... 

A wide range of such identities is likely to come in handy in future approaches for different 
math problems, especially ones in adjacent fields (e.g., proving irrationality of zeta function 
values [16]). At the moment, the generalization of the results in [19] to an infinite class is done 
by human researchers. However, these generalizations are now being further automated and 
extended. This process provides an elegant example of the symbiosis between computer- 
generated mathematics and human-generated mathematics.” 

 
We are grateful to the referee for impelling us to sharpen the novelty of our work. 

 
The referee wrote- 
- On the algorithmic side, the contributions are not strong enough, with the two proposed 
approaches being a variant of exhaustive search (with discretization of the search space), 
and gradient descent. In the way they are used, these are also quite specific to the problem 
of finding PCFs, and it is unclear how these could generalize (e.g., to problems with larger 
search space). 

 
Reply- 
We thank the referee for this comment. While the algorithms themselves are based on well- 
known approaches, it is their application in a new field that is the most exciting aspect of our 
work. Specifically, our work is the first to use a meet-in-the-middle algorithm for an application 
in number theory to the best of our knowledge. It is also the first usage of any gradient descent- 
type algorithm in this field. 
With that said, we understand the referee’s point of view and made several improvements in 
the algorithms and their presentation in the revised manuscript: 

 
(1) It is possible to reformulate and present the LHS and the sequences inside the continued 
fractions as general parametric functions (enumerating over parameters) instead of just the 
special case of polynomials. The code infrastructure supports it, with the aim of expanding our 



 

search to other structures as well. Looking at the bigger picture, we do not believe it is sufficient 
to focus on one specific representation structure, such as PCFs, even though PCFs were 
initially a successful starting point for our approach. In fact, our algorithms (and code) are 
designed to allow using (or easily adding) any mathematical structure that can be represented 
in a parameterized and countable sequential manner, thus providing a flexible scheme. 

 
(2) We improved the MITM-RF algorithm by utilizing more sophisticated data structures, which 
are more suited for this problem. Specifically, we now use Bloom filters instead of a regular 
hash-table, which drastically decreased the memory-space needed in the enumeration 
process. Bloom filters allow for a much lighter implementation, at the cost of some false- 
positives. Since false-positives are abundant in this stage anyway (due to limited precision), it 
does not affect the algorithm’s performance. The manuscript now describes these 
advancements as well in the section on MITM-RF. 

 
(3) In addition to the two points above, we have recently developed a more sophisticated 
conjecturing algorithm, which utilizes a variation of the Berlekamp-Massey algorithm to identify 
significant patterns in expressions calculated directly from fundamental constants. Our 
Berleklamp-Massey-based approach is used to identify an underlying mathematical structure 
in the representation of a target fundamental constant. This algorithm finds a generating linear- 
feedback-shift-register over Galois fields. Each shift register can be translated to recurrent 
formulas for the parameters (e.g., covering all PCFs and cases of multiple alternating 
polynomials). While this last development is currently not part of the manuscript, we can 
consider including it if the referee sees this as a crucial aspect. 

 
The referee wrote- 
- It is unclear what the authors exactly mean by "new" conjecture. In fact, most conjectures 
in Table 4 are labeled as "new and proven" (e.g., 4 / (pi - 2)), while the proof in Appendix F.2 
is often a mere specialization of Gauss’s continued fraction. This should not be considered 
as a new result. 

 
Reply- 
We appreciate the referee’s input on this matter. We would first like to emphasize that the 
more significant results, and indeed the ones that drove us to submit to Nature, are found in 
Table 5. While the results in Table 4 were the first to be discovered by our algorithms, they 
are simpler to prove, and their mathematical context is less exciting from the point of view of 
pure mathematics. The results in Table 5 are more interesting than the results in Table 4, and 
for example, part of them led to the new findings on the Catalan constant. Unlike the results 
in Table 3 and 4 that received suggested proofs within several weeks to a few months (from 
the original appearance of our work on arXiv), the results in Table 5 have not been proven yet. 

 
To explain why the results in Table 5 are interesting and can be considered as new results we 
point to a relatively famous historical precedent: The discovery of an exponentially converging 
series for 𝜁𝜁(3) led Apéry to discover a continued fraction representation that allowed him to 
prove its irrationality. 𝜁𝜁(3) is even named the Apéry constant following this important proof. 
This proof created a method that was later on utilized in other problems. The results we found 
for the Catalan constant now go in the same direction. 



 

A similar motivation for discovering new continued fractions is also brought in other papers. e.g., “Such 
identities are intrinsically fascinating, but continued fraction expansions have found wide applications in 
number-theoretic irrationality proofs. There is always hope that the correct continued fraction will 
provide a Diophantine approximation sufficiently nice to prove the irrationality of a famous constant, 
a la Roger Apery's proof that 𝜁𝜁(3) is irrational”. 

[reference 19 in the revised manuscript]. 
 
Regarding the labeling of results as “known” / ”new and proven” / ”new and unproven”, we now 
better explain their definitions in multiple places in the text and in Appendix Section A that 
collects all the PCF results and sorts them. The clarified definitions given in the revised section 
are also copied here: 

 
“… each individual generated result, where it can be known: i.e., we have found this result (or 
an equivalent form of it) in the literature, and therefore it serves as a proof-of-concept for the 
Ramanujan Machine but is not considered new. A result could also be new and unproven: 
i.e., a new conjecture found by our algorithms that we have not found in the literature. We 
consider it a new conjecture until proven or until an equivalent form, unknown to us at first, is 
found. Finally, a result can be proven: i.e., a result of our algorithms that was proven after the 
first appearance of our work on arXiv. We note that some of these results are easy to prove, 
meaning that they can be derived from known results in a relatively straightforward manner 
(e.g many 𝜋𝜋 results can be derived by specific specializations of Gauss' continued fraction). 
We provide several such examples in the later sections of the Appendix.” 

 
To summarize the response on this comment, the results in Table 4 were called “new” in the 
original version of the manuscript because their representations as PCFs were not shown 
before in the literature. However, once discovered, these PCFs were found to be relatively 
easy to prove as specializations of Gauss’ continued fraction (each exact specialization must 
be found explicitly using identities of hypergeometric functions). In contrast, this situation of 
being “new yet easy to prove” is not the case with results found in Table 5 and elsewhere in 
our manuscript. The results brought throughout the main text concerning 𝜁𝜁(3), 𝜋𝜋2, and 
Catalan’s 𝐺𝐺 are (to the best of our knowledge and research) not a specialization of any 
previously formulated identity. Therefore, we call these results “new and unproven”. 

 
The referee wrote- 
- The presentation of the algorithmic part can be significantly improved; for example: 
- In Section 4, it is mentioned that "we empirically observed that all minima are global, and 
their errors are zero. Therefore any GD process will result in a solution with L = 0". This 
needs more justification. 

 
Reply- 
We thank the referee for pointing this out. We improved the explanation in the caption and in 
the section on the GD process. We copy part of the improved section here: 
(also see the response to Referee #2 on this) 

 
“... Solving this optimization problem with GD appears implausible since we are only satisfied 
with exact zero-error integer solutions. Close to zero (yet not zero) solutions are usually 
meaningless as mathematical conjectures. 



 

Nevertheless, we found a significant feature of the loss landscape of the described 
problem that helped us develop a slightly modified GD, which we name 'Descent&Repel' (Fig. 
4). Examples of the results appear in Table 1. Without the restriction of being integers, the 
zero-error minima are not 0-dimensional points but rather (d-1)-dimensional manifolds with d 
being the number of optimization variables. Specifically, in the case plotted in Fig. 4, there are 
d=2 optimization variables, and therefore a 1-dimensional manifold of minima - appear as 
bright curves in the maps. This dimensionality of the minima is expected given the definition 
of the error that only poses a single constraint. We empirically validated that almost all minima 
have zero error (i.e., resulting in exact equality). Therefore, the GD process is expected to 
result in a solution with L = 0. The high dimension of the manifold of minima motivates our 
approach of adding the repel step to the algorithm since most minima have a neighborhood 
that contains additional minima.” 

 
The rest of the section provides examples and describes the algorithm in three stages (the 
descriptions there are also revised substantially). Moreover, we have made a similar 
improvement in the presentation of the MITM-GD algorithm (in Section 3). 

 
The referee wrote- 
- It is mentioned that the repel mechanism is used to increase the search space, and thus 
"the probability of finding a match in space". In light of the above comment, do all initial 
conditions lead to a solution? 

 
Reply- 
No. Most initial conditions do not lead to a solution, as they get “stuck” in an area of space 
where the integer parameters do not reach the global minimum of an exact zero loss (it is 
possible to identify when the process is stuck and when it converges to a solution). This 
scenario is very common in GD algorithms in the field of machine learning, where each initial 
condition has a high chance of reaching a local minimum instead of a global minimum. For our 
goal of finding a formula for a fundamental constant, a non-zero loss minimum is irrelevant, 
which makes our problem crucially different from other problems in machine learning that use 
GD-type algorithms. 

 
The referee wrote- 
- The paragraph after Equation 7 is unclear, and its logic should be re-visited: Unclear why 
the dimensionality of the manifold is relevant to the discussion, unclear whether GD refers to 
vanilla gradient descent or to the version with discretization — especially since the last 
sentence in the paragraph infers a property on the problem with integer constraints. 

 
Reply- 
We thank the referee for this comment. The paragraph after Eq. 7 has been revised in order 
to be more informative (also see the text copied above). The algorithm has discretization in its 
third stage, where we combine the regular gradient descent with a loss function that optimizes 
for integer solutions. The first stage of the algorithm performs a regular gradient descent 
without discretization. 

 
Importantly, the dimensionality of the minima arises directly from the definition of the error. 
The error we use is the square of distance between the LHS and RHS, which only poses a 
single constraint on the d parameters. Therefore, the dimension of the manifold of    possible 



 

solutions is typically d-1. It is the additional constraint of searching for integers that causes 
solutions to be extremely rare despite the high dimension of the manifold. 

 
Following the comments of both Referees #1 and #2 on the gradient descent algorithm, the 
details of the algorithm are now explained better (see the revised Section 4). 

 
The referee wrote- 
- What are x and y axes in Figure 4. 

 
Reply- 
We added a sentence in the caption defining the axes. The axes are parameters of the GD 
and can be chosen in many different ways (examples defined in the captions of Fig. 4 and 6). 

 
The referee wrote- 
- Motivation of Descent and repel. It is mentioned that MITM-RF is not "scalable" — mention 
more explicitly to which parameters it is desired to scale up. 

 
Reply- 
The reason we consider MITM-RF as more limited than the GD approach is the computational 
complexity. 
If we wish to expand to much higher order polynomials, MITM-RF is impractical due to the 
exponential complexity growth with the degrees of the polynomials. In contrast, GD-type 
searches are being used regularly in the machine learning community to optimize parameters 
over such large spaces. Therefore, it is possible that the GD-type search will become of 
greater value when the search space grows. 

 
To conclude our response to the referee 
We thank the referee for helping us improve the manuscript. We are especially grateful for the 
suggestion to explore the efficiency of the computation of fundamental constants using our 
results - this led us to a new contribution related to the Diophantine approximation of the 
Catalan constant. 
We hope that the referee now shares our excitement about this study and its promise. 

 

Referee #2 (Remarks to the Author): 

The referee wrote- 
Dear Editors, 

 
I read the submission 

 
"The Ramanujan Machine: Automatically Generated Conjectures on Fundamental 
Constants" 
By: Raayoni et al 
MS: 2020-04-07825 

 
with great interest. 

 
The paper attempts to generate new identities, specifically polynomial continued fractions, 
by generating large sets of potential candidates and then using a gradient-descent 
optimization to zoom in "correct" ones by checking to hundreds of digits of precision. 
Consequently, many correct expressions are found, and impressively, new conjectures have 



 

been raised, some of which have been proven since the appearance of the paper on ArXiv 
and several more still open. 

 
As stated in the appendix and the conclusions, this exercise has prompted an interactive 
website (in the spirit of PolyMath, GIMP, etc,) www.RamanujanMachine.com 
that has inspired the mathematics community to prove some of the new conjectures. 

 
I am very sympathetic to this experimental approach to mathematics using the best 
resources of today: computer algebra and machine-learning. 
I therefore recommend the article for publication in Nature subject to the following revisions: 

 
Reply- 
We are grateful to the referee for the detailed review and constructive comments that we 
answer point-by-point below. 

 
The referee wrote- 
- It would be good to include a discussion on why PCFs are chosen (out of the myriad of 
possible mathematical structures) for the experimentation and why this is a perfectly adapted 
problem to their philosophy. An excellent summary of the subject is 

 
Bowman and J. Mc Laughlin, Polynomial continued fractions, Acta Arithmetica, 103(4) 
(2002), 329–342 

 
and should be cited. 

 
Reply- 
We thank the referee for this comment and now cite this reference. We also added two new 
paragraphs in the introduction that add motivation for the importance of PCFs, and also expand 
the discussion on certain applications of PCFs. 

The new introduction paragraphs are also copied here 
 

“One reason we choose to focus on PCFs in this work is their ability to capture a sweet- 
spot between simplicity and wide implications. Their structure is quite accessible for computer- 
based exploration using operations on large integers, making them a good object for a test- 
ground while examining an automated conjecturing approach. At the same time, PCFs turn 
out to naturally appear in many problems in mathematics, to connect to many special functions 
and generalize all infinite sums. PCFs also enable isolating unique aspects of importance to 
fundamental constants such as testing irrationality or normality using efficient computation 
methods to high precision (see Appendix sections D and G). 

A possible explanation for why PCFs are so abundant in areas of mathematics is that they 
constitute an important special case of a general mathematical object: linear recurrences with 
polynomial coefficients, which for recurrences of depth 2 correspond to PCFs, and appear in 
this way in many mathematical problems (PCFs with alternating polynomials - as shown below 
- further correspond to recursion depths >2). The solutions to such recurrences are usually 
very complex and include special functions (i.e., hypergeometric functions, incomplete gamma 
function, etc.). For this reason, finding new PCF identities is valuable for different mathematical 
objects, especially so when incorporated as part of symbolic calculations programs (such as 
Maple and Wolfram Mathematica). More on PCFs in the Appendix.” 

 
The referee wrote- 
- In Sec 2 for Related Works, it might be worth citing explorations in supervised and 

http://www.ramanujanmachine.com/


 

unsupervised machine-learning (very much in the spirit of this paper in attempting to find 
structure and generate new conjectures, and not in the style of ATP) have been applied to 
study of 
the physical laws 
"Discovering Physical Concepts with Neural Networks", 
Raban Iten et al, PHYSICAL REVIEW LETTERS 124, 010508 (2020); 

 
"Deep-Learning the Landscape", by Y.-H. He 
https://arxiv.org/abs/1706.02714, Phys.Lett.B 774 (2017) 564-568 

 

and number theory 
 
"Machine Learning meets Number Theory: The Data Science of Birch- Swinnerton-Dyer", L. 
Alessandretti, A. Baronchelli, Y.-H. He 
https://arxiv.org/abs/1911.02008 

 

Reply- 
This is a very good suggestion. The revised manuscript now has an additional paragraph in 
the section on related works, citing these papers and a few other recent advances, especially 
on applying AI and modern machine learning techniques in physics. 

 
The referee wrote- 
- Eq (5): Can the author give a brief account of the type (or full list) of the polynomials \alpha, 
\beta, \gamma, \delta as well as the function f_i (e.g. what does i index? how many such function 
are tried?) that was used in the search? How exhaustive was it? Also, please present an idea 
of the running time and on what machine. 

 
Reply- 
We added more information on the space of parameters used in each algorithm and 
elaborated on the running times used for the runs we performed. These details are now 
provided in the respective sections in the main text and appendices. 
We also added this information in the git code that we share online, so other users can 
estimate running time. (Specifically, there is a test code that provides many of our results, 
together with detailed comments that help new users to run the code for the first time). 

 
We are still far from using the full potential of the current algorithms because more 
computational power can be very valuable to extend the enumeration (so far, we ran solely on 
simple PCs, without exploiting acceleration, distribution, nor cloud computing services). The 
additional information on the enumerated space and running time that we now provide in the 
revised manuscript can help to emphasize the potential for improvements in future work. 

To give an idea of actual running times, we copy the new paragraph in Appendix Section A: 

“Creation of the LHS hash table takes ~10 minutes for the typical search spaces we used  of 
108   possible terms (executed on a regular computer). The RHS enumeration step is  slower, 
taking ~10/𝐶𝐶 minutes for a search space of just 107formulas (executed on a regular computer). 
It is worth noting that for the PCFs we found, the required RHS search spaces were 
significantly larger than the required LHS search spaces, and so the running time of the RHS 
was the main compute bottleneck. Nevertheless, this trend may be a coincidence related to the 
fundamental constants or the type of LHS functions we chose. Future runs may benefit from a 
larger memory for larger LHS hash-tables.” 

 
The running times specified here were calculated on a computer that has only 2 cores and 8 

https://arxiv.org/abs/1706.02714
https://arxiv.org/abs/1911.02008


 

GB of RAM - meaning no special computational resources were used. Although our resources 
were quite limited, we were still able to discover novel results, which shows our approach's 
potential. 
Let us explain how these running times depend on the search space that we used: The search 
space size is defined as the number of possible formulas. For example, we can initiate a naive 
search for 𝛼𝛼 as a degree 1 polynomial and 𝛽𝛽 as a degree 2 polynomial, with all coefficients 
being between 0 and 25. This space will have ~107 RHS PCFs and will take ~10 minutes (this 
search space is good for finding pi related PCFs). Our code is quite modular, so one can 
facilitate understanding of the structure of expected results to more delicately fine-tune the 
search space to include high degree polynomials while keeping the number of terms small 
enough. Our longest search took ~4 days. More detailed examples now appear in our open- 
source github page. 

 
The referee wrote- 
- Could the authors comment on the success of generating PCFs for algebraic (e.g. Golden 
ratio) versus transcendental constants (e.g. Pi); do they differ? This would be of substantial 
interest to the number theory community. 
 
Reply- 
This is a very interesting question. We found that certain constants have many more PCFs 
than others and therefore our approach appears more successful for them. Examples of such 
constants include e and \phi. 

 
However, we note that the absolute measure of success is not rigorously connected to the 
absolute number of PCFs (as the spaces are infinite). Instead, we only make such 
comparisons when testing different fundamental constants under the same fixed space of PCF 
parameters. It seems that constants like e and \phi generally have more lower-order PCFs 
than constants like 𝜁𝜁(3) and Catalan. Of course, this does not mean that there are “more” 
PCFs for these constants. 

 
It is interesting to find the lowest order polynomials that are possible for each 
fundamental constant. We now present these questions and related questions in the revised 
manuscript. For example, we find that pi has lower-order PCFs than pi^2, and that this 
continues with larger powers, and similarly with larger arguments of the Reimann Zeta 
function. We updated Appendix Section C with the current values found for each constant, 
hoping that this will contribute to future studies or stir up new ideas in this direction. 

 
One can see these polynomial orders as a measure of complexity that generalizes the special 
case of simple continued fractions. For simple continued fractions, it is known that the set of 
periodic sequences a_n is a subgroup of the algebraic numbers. PCFs can represent 
transcendental numbers as well. There may be a way to generalize this concept to define 
growing levels of complexity of Aleph0 numbers. 

 
The referee wrote- 
- The Descent&Repel algorithm needs to be clarified (very much line with the comment 
above) 
* Move the comment about the variables to be optimized coming from 
\alpha, \beta, \gamma, \delta, as coefficients in these polynomials to just below Eq (7), 
before saying there are d of these. What is the typical number of d? i.e., what are the 
degrees of the polynomials considered? Presumably, Fig 4, where d = 2, is only a schematic 
illustration. 

 



 

𝑖𝑖 

Reply- 
We thank the referee for this important comment and the careful reading of our manuscript. 
We apologize for the typos and missing information in the description of the GD algorithm. We 
revised this section carefully, including the figure and its caption (and the corresponding 
appendix section). The missing information is now provided in the manuscript. 
Our proof-of-concept runs of the Descent&Repel algorithm covered a very small subspace of 
the possible parameters. Most of the runs we performed were in 2 dimensions, but we also 
simulated larger spaces as a test of the algorithm. 
The fact that already in d=2 we found results motivates trying a much larger space. 

 
The referee wrote- 
* Why does repulsion help? i.e., why shouldn't one consider integer solutions to the 
coefficients which are close together in solution space? 

 
Reply- 
In early attempts to use gradient descent without repulsion, we noticed that many points 
converge to the same minimum, often independent of the initial conditions used. Since we 
hoped the methodology would provide more diverse results that span a wider range of possible 
solutions, we experimented with different approaches to extend and improve it. After testing 
different methodologies, we identified the repulsion that performed well in numerical tests. 
Repulsion helps by causing the points to more effectively cover the space of parameters. This 
is, of course, a heuristic, like many algorithms in AI these days - we tune the repulsion strength 
so it creates a typical point-to-point distance that covers the integers in the most effective way. 

 
Regarding the specific strength used for the repulsion, if the repulsion is too weak, then the 
distance between points will be too small and result in many points that converge to the same 
minimum. If the repulsion is too strong, then the distance between points will be much larger 
than the distance between adjacent integers, which will result in many potential integer 
solutions being missed. 

 
We added this explanation to the section about the algorithm. 

 
The referee wrote- 
* Write the integer-round loss function along side with {\cal L} 
and explain how the 2 are used alternatingly 

 
Reply- 
We thank the referee for spotting this point of confusion and of course we corrected it, writing 
the two types of loss functions that we use as part of the algorithm. (See the description of 
stages 1-3 of the algorithm on page 8, where we explain how the two loss functions are 
alternated in stage 3). 

 
The referee wrote- 
* in step 1 of the algorithm, what is x_t? presumably \mu is step size and x_t denote the d 
variables and L is script-L? 

 
Reply- 
We thank the referee for this comment. In the revised manuscript, we defined the values of x 
and the rest of the parameters in stage 1 of the algorithm: 

 
“We perform a standard GD separately for each point 𝑥𝑥𝑖𝑖, which is a d-dimensional vector. The 
loss function L is defined in Eq. 7, and thus, for each point 𝑥𝑥𝑖𝑖 we define its next iteration t+1 as 



 

𝑥𝑥𝑖𝑖
(𝑡𝑡+1)  = 𝑥𝑥𝑖𝑖  

(𝑡𝑡)  − 𝜇𝜇 ⋅ 𝛻𝛻𝛻𝛻|𝑥𝑥  (𝑡𝑡) , where 𝜇𝜇 is some small enough step size.” 
 
Additional revisions are implemented in the other parts of the algorithm (e.g., separating the 
definitions of the two loss functions). 

 
The referee wrote- 
* In Fig 4, the colour-legend needs to be explained. 
Why is there no red? 
 
Reply- 
The two colorbars were used for two different parts of the figure. The left colorbar was for the 
loss landscape, while the right colorbar was for the dots that move on the landscape. We now 
explain it more carefully in the caption. We also modified the right colorbar to be made from 
colored dots, in order to make the separation clear. 

 
The referee wrote- 
Which Log-error is used? the integer-round one or the one in Eq 7. What are (x,y) ? 

 
Reply- 
There are two errors being used in the two stages of the algorithm. We apologize for the 
possible confusion in the previous version and clarified this issue in the improved manuscript. 

 
The referee wrote- 
- A scope of the constants used in the search algorithm (LHS of Eq 5) should be listed 
explicitly, i.e., which constants (pi, e, Catalan, etc) have been searched, and which have 
produced good hits. This is particularly relevant to Table 2. Are there any in table which did 
get a hit and thus a conjecture? 

 
Reply- 
We now detail the full scope of constants that were searched for in section 5.4. We also refer 
to that section when discussing the successful runs, which produced the results in chapter 3. 
The constants for which we conducted searches (in addition to the ones which produced 
results) are Riemann’s 𝜁𝜁(5), Euler-Mascheroni 𝛾𝛾, and Khinchin’s 𝐾𝐾0. Additionally, we ran some 
searches for the Feigenbaum’s 𝛿𝛿. 

 
The referee wrote- 
- Small typographical errors such as: 
* All equations and footnotes (e.g. footnote 5) need to be punctuated; 
* The quotation marks are all wrongly type-set; make sure to use 
` instead of ' for the beginning of the quote in LaTeX. 
* Top left box of Figure 2, is that supposed to be PCF? 

 
Reply- 
All these errors are now fixed throughout the main text and appendices. 
We thank the referee for the detailed review and careful reading that helped to improve our 
work substantially. 

 
To conclude our response to the referee 
We are grateful for the strong positive review and for the helpful comments. 



 

Referee #3 (Remarks to the Author): 

The referee wrote- 
A. This is a seminal paper describing two very efficient 
algorithms to generate intriguing conjectures with 
far-reaching potential applications. 

 
B. While the LLL and PSQL were used in an ad hoc way before, 
the systematic and unified approach described here is very novel 
and significant. 

 
C. Very valid and the authors share all their ample data and 
output in their web-site for the benefit of the mathematical 
world. 

 
Reply- 
We thank the referee for emphasizing the novelty of our work and its open-source approach 
that contributes to the wider community - this is especially important for us. 

 
The referee wrote- 
D. Since this is mathematics, the standards are much higher 
than in the physical scientist, and all their conjectures 
are virtually certain, even those still awaiting a formal proof. 

 
Reply- 
We are especially glad for this comment. 
We think that it is a very important point of difference between our efforts with fundamental 
constants and the vast interest in recent years in automated conjecturing in physics. Indeed, 
the amount of data in a fundamental constant makes the conjectures virtually certain because 
of the ability to check each conjecture to arbitrary precision. This precision and the availability 
of data is what makes the situation very different from the attempts to use algorithms to find 
conjectures in physics (which has recently become a hot topic in the machine learning 
community). In contrast with our case, in physics, the availability of data is often the bottleneck, 
creating very different requirements for the algorithms. 
In the revised manuscript, we now also cite key papers on AI in physics to help make the 
connection and show this important difference. 

 
The referee wrote- 
E. Perfect 

 
F. The references should be carefully copy-edited. 
e.g. (put please check everything) 

 
Ref. 18: the authors' names are reversed and they 
should include first names (or at least first initial) 

 
Ref. 20: A=b -> A=B 



 

Ref. 45: ditto (and also the title is 

wrong) Ref. 60: ditto 

Reply- 
We really appreciate the thorough reading and catching these typos. We corrected all of 
them. 

 
The referee wrote- 
G. See above, otherwise perfect 

 
H. Very well-written, lucid, and engaging. A 
true Tour-de-forice 

 
To conclude our response to the referee 
We thank the referee for the strong positive review and for helping to improve our 
manuscript. 

 

 

Reviewer Reports on the First Revision: 

Referee #2 (Remarks to the Author): 
 
I had a look of the revised manuscript, focusing on how the authors address my comments in 
particular and I am happy with the response. 
 
 
Referee #3 (Remarks to the Author): 
 
All the objections of the referees were very nicely addressed, and now the paper is yet stronger. 
 
This is a very significant contribution to the budding field of experimental mathematics, that used 
be considered an oxymoron, but the future of mathematics is in that direction. 
 
I strongly recommend acceptance. 
 
 
Referee #4 (Remarks to the Author): 
 
This manuscript describes what the authors term "The Ramanujan Machine", which is a semi-
automatic algorithm and computer implementation that permits one to computationally generate 
conjectural identities of the general form $C = PCF(a,b)$, where $C$ is a specific mathematical 
constant and $PCF(a,b)$ is a polynomial continued fraction. Here a "polynomial continued fraction" 
is a continued fraction whose numerators $a(n)$ and denominators $b(n)$ are given by the 
integer-coefficient polynomial functions $\alpha(x)$ and $\beta(x)$, respectively, for $x = 0, 1, 2, 
...$. 
 
The authors document how their algorithm and software implementation have not only recovered 
a number of known identities of this form, but have generated numerous previously unknown 
mathematical identity conjectures, some but not all of which have been subsequently proven by 
conventional formal methods. 



 

 
The work described in the manuscript is original and mathematically significant. The manuscript 
itself is quite well-organized, with its main body targeted to a more general readership, and with 
appendices containing more technical details and background. The usage of English is very good 
throughout. 
 
In general, the manuscript is well deserving of publication. But in the spirit of further 
improvements to the manuscript, this reviewer offers the following comments for the "Related 
Work" section: 
 
1. The general approach of using algorithmic and computational tools to explore the mathematical 
universe and to discover conjectures worthy of further examination and formal proof is most often 
known in the mathematical literature as "experimental mathematics" (the authors cite several 
references where this terminology is used). Thus brief mention of this terminology is in order here. 
 
2. The authors briefly mention the PSLQ algorithm and its usage to find new results on pi. This 
certainly is an appropriate example of "automated conjecture generation" (to use the authors' 
terminology). But it is not quite accurate (or at least not complete) to say that PSLQ led to a 
scheme that finds specific digits of pi. What should be said here is that the PSLQ algorithm was 
used to numerically discover a new formula for pi, which was then proved using a calculus 
argument, and then this new formula, after some further manipulation and analysis, gave rise to 
an algorithm that permits one to directly calculate strings of binary or base-16 digits of pi starting 
at a given position, without needing to know any of the preceding digits. By the way, it would be 
appropriate here to present the formula for pi discovered by PSLQ, which is: 
 
$$\pi = \sum_{n=0}^\infty \frac{1}{16^n} \left(\frac{4}{8n+1} - \frac{2}{8n+4} - 
\frac{1}{8n+5} - \frac{1}{8n+6}\right)$$ 
 
3. The authors should mention the work of Doron Zeilberger, Herbert Wilf and others, who 
developed a tool that proves a large class of combinatorial identities, once the identity is 
numerically (or otherwise) discovered. A good original reference is: 
 
Herbert S. Wilf and Doron Zeilberger, "Rational functions certify combinatorial identities," Journal 
of the American Mathematical Society, vol. 3, no. 1 (Jan. 1990), 147-158. 
 
4. The authors might also mention the work of Stephen Wolfram, who has championed 
experimental-computational methods to investigate the properties of cellular automata. See, for 
instance, 
 
Stephen Wolfram, A New Kind of Science, Wolfram Media, Champaign, IL, 2002. 
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