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Note 1: Extended PINEM theory 

This section presents an extension to the conventional photon-induced nearfield electron 

microscopy (PINEM) theory
1-9

. We reconstruct the first steps of the PINEM theory and then 

generalize it to precisely describe the interaction between electron and light pulses. By 

considering the spatiotemporal dynamics of the pulses, we provide a more general 

description to common PINEM experiments. In the end of the following derivation, we 

provide the master equation that describes typical acquired data in PINEM experiment: e.g., 

the electron spectral density and time scan measurement. This theoretical advancement 

provides us better tools to fit our experimental data and also explain other intriguing ideas 

where some we discuss below. All is built on our generalization of the coupling constant to 

be dynamical variable, introducing a time-dependent coupling constant that under the more 

aggressive assumptions reduces to its time-independent variant of the conventional theory. At 

the end of this section, we discuss the approximations required to retrieve the conventional 

case from our extended theory and provide a comparison between the two theories. 

1a. The coherent interaction for the extended PINEM theory 

The conventional PINEM theory
1-9

 describes a free-electron wavefunction interacting 

with a classical EM field and provides an analytical derivation for the resulting electron 

wavefunction under several approximations. One of these approximations is neglecting the 

combined spatiotemporal dependence of both the electron and the laser, and considering only 

their temporal dependence. This is a reasonable approximation for short-distance interactions, 

but in our long interaction setup, we cannot longer use that approximation. Thereby, we had 

to extend the conventional PINEM theory to include the spatiotemporal dynamics of the 

electron and the electric field in order to explain our observations. We begin by introducing a 

general derivation for the interaction in the framework of PINEM up to the point this 

approximation is made. Then, we split the discussion and consider each case separately. 
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The general time-dependent Schrödinger equation electron–light interaction (relativistic 

corrections are added below) is 

[
( ̂    )

 

   
    ]    

  

  
,     (S1) 

where   ̂       is the momentum operator,    and    are the electron charge and mass, 

respectively,   is the EM field vector potential,   is the EM field scalar potential, and 

          is the electron wavefunction. 

Two main assumptions are used in the analytical treatment of the PINEM interaction: (1) 

electron paraxiality (i.e., the electron trajectory is constrained to a linear axis which w.l.o.g 

we denote by  ) and (2) small recoil of the electron due to photon absorption/emission. Under 

these assumptions, the Schrödinger equation for an electron travelling along the  ̂ axis with a 

primary momentum of     ̂ reduces to 

*      ( 
 

  
   )  

     

 
( ̃  

      ̃ 
     )+    

  

  
 ,  (S2) 

where       ̂ is the electron velocity,       ̂  is the electron initial wave-vector, and    

is the electron initial energy. The   component of the electric field is the dominant one and 

can be written as          ̃       
    , with   being the photon laser frequency and  ̃  

the complex electric field phasor. The physical field is equal to    {       }. The fastest 

component of the field is dominated by      , and any additional time dependency in  ̃  is 

much slower than  . In the transition from Eq. S1 to Eq. S2, relativistic corrections are 

accounted by considering the relativistic Lorentz factor for the velocity    in the expression 

for the electron mass 𝛾  . Note that the same derivation can be made through the relativistic 

Klein–Gordon or Dirac wave equation, yielding the same result
10

. It is convenient to separate 

the wavefunction to          (    
  
 
 )      , where the first term is the plain-wave-
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electron with its initial energy-momentum components and        describes the slower 

dynamics arising from the interaction. Now, Eq. S2 reduces to  

  
  

  
 

  

  
  

    

  
(      ̃       ̃ 

 ) ,   (S3) 

and the solution is found to be 

                 
      {            } ,   (S4) 

Where we further define          as the time variable associated with the electron, i.e. 

the time in its frame of reference.           is a general function that represents the 

coherent electron wavefunction before the interaction and        is the generalized-time-

dependent coupling constant, defined by: 

       
  

  
∫  ̃ (         

  

  
)  

   
  

      
 

  
  (S5) 

       

  
∫   (         

  

  
)    

 

  
  

The last transition exploits the relation          ̃       
    . Like the conventional 

PINEM coupling constant, the generalized-time-dependent one is a dimensionless complex 

parameter that describes the overall coupling efficiency between the electron and light. One 

can think of this dimensionless parameter as a quantitate value to compare between different 

electron–laser interactions strengths. 

Note that the integration is computed only along the electron trajectory (  axis) up to the 

point of interest. Note also that the transverse dependence of   (in   and   directions) is set 

solely from the electric field    at the point of interest. In practice, the electrons are 

measured far away from the interaction region; thus, we can safely look at     as the 
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upper limit of the integral in Eq. S5. Notice that now, none of the above quantities depend 

explicitly on  . 

The electron wavefunction (Eq. S4) and the coupling constant (Eq. S5) now take the form 

                   
      {             },   (S6) 

with 

         
  

  
∫  ̃ (         

  

  
)  

   
  

     
 

  
     (S7) 

The next step is to calculate the coherent electron energy probability density. Since in the 

general sense, the coupling constant (Eq. S7) can depend on   at a potentially complicated 

way, the calculation of the electron probability density is not immediate and we need to find 

the Fourier transform of the electron wavefunction (Eq. S8) with respect to  , 

         ∫         
 

  
 

   

        (S8) 

where   is the energy variable and          is the coherent probability density for the 

electron to be at each energy state  . The probability for the electron to have an energy   is 

therefore given by 

            |        |       (S9) 

Using the Jacobi-Anger expansion         ∑       
    

     for the electron 

wavefunction in Eq. S6, with    |        | and      {         }    , we obtain 

the following series representation for the electron wavefunction
9
, 

                  ∑           
     

        (S10) 
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where               |        |       {         } . This is the most general and exact 

expression for the electron wavefunction after the interaction with the laser in the framework 

of PINEM. 

Generally, the coherent electron probability density function cannot just be inferred from 

equation S10 because it does not represent the Fourier series of the electron wavefunction 

since the coefficients    depend on  . However, in our scenario, the bandwidth of the initial 

electron wavefunction    is narrow enough in energy as well as the energy width of the  

  
   | |  terms, compared to the incoherent contributions discussed in the following 

subsection (e.g., the width of the zero-loss peak and the temporal pulse durations of the 

electron and the laser). In this case, the coherent electron probability density is given by 

                    ∑   
                         

          (S11) 

where   
                   

   |         |  with    is the time delay between the electron 

and laser. Now, we only need to consider the incoherent contributions to the coherent 

electron energy probability density function to get the final electron energy probability 

density. This is discussed in the following section.  

1b. Incoherent contributions and the final electron probability density function 

In practice, the electrons in our UTEM arrive at random times with different energies, and 

they are also distributed in the transverse directions according to specific distributions (e.g., 

Gaussian). We incorporate these incoherent contributions by convolving, in time and energy, 

and integrating over the transverse direction, the initial electrons classical probability density, 

denoted by            , and the coherent single electron probability density, 

                    and. The final electron probability density function for a given delay    

between the electron and laser is therefore given by 
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            ∬                                         (S12) 

In practice, we measure the weighted average of             over the transverse spatial 

directions         ∬               . More information about the transverse part of 

the distribution and the rest of the incoherent broadening in Section 5c. 

This expression for the electron probabilities with respect to the delay    is the most 

general formula regarding the PINEM interaction developed so far. It represents the spectrum 

of the electron for any given delay and can be compared to the acquired time scans discussed 

in the main text. Note that                     of Eq. S11 contains a set of delta functions 

centered around       , making the final electron probability density function (denoted 

by         above) describe a continuous spectrum with distinct components around the set 

of energies       . 

1c. Reduction to the conventional PINEM theory 

In the conventional PINEM theory
1-9

,  ̃  is assumed to be time-independent, and the 

coupling constant according to equation S7 reduces also into its time-independent version, 

namely,                  with 

       
  

  
∫  ̃          

   
  

      
 

  
                                 (S13) 

Substituting this coupling constant to the electron wavefunction of Eq. S10 we get 

                  ∑         
     

         (S14) 

where             |      |  
     {       }. These    are time-independent, and therefore, 

the above series representation for the electron wavefunction is the Fourier series and we can 

simply write the probabilities as 

  
              |  |

    
   |     |      (S15) 
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To completely describe the interaction, we shall now provide the coherent electron 

probability density of the conventional theory. For this, we use the   
              

probabilities (Eq. S15) , which resemble the probabilities presented in Eq. S11, without the 

longitudinal spatiotemporal dependence. Thus, the final coherent electron probability density 

of the conventional theory takes the form, 

                 ∑   
                      

    .  (S16) 

Now, to account for the incoherent contributions, we follow this paper
4
 and apply the 

same method of the discussion in the previous subsection with one small adjustment. Since 

we assume the laser field is time-independent, we must "artificially" add a temporal 

dependence for the laser. Therefore, the formula for the electron probabilities    is given by
9
 

as: 

  
                 

 

√    
∫  

 
  

   
   

 ( | | 
 

       

   
  

)      (S17) 

where    is the electron pulse duration and    is the laser pulse duration. For the case when 

the coupling constant is set to be just a number         , the electron beam spatial 

distribution is averaged out. One can use our derivation in subsection 1b to incorporate all 

electron incoherent contributions (i.e., in energy, space and time) by substituting the coherent 

electron probability distribution for the conventional theory (Eq. S16) in our master equation 

(Eq. S12) which describes the general expression that incorporates both the coherent and 

incoherent contributions of the electron and laser. More information about the incoherent 

broadening is presented in Section 5c. 

 1d. Comparison of the conventional and extended PINEM theories 

As shown in the main text (Fig. 3), the conventional PINEM theory isn't sufficient to describe 

the time scans we observed in this experiment. In Fig. S1 we show a comparison between 
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theoretical spectra produced using our extended theory and the conventional PINEM theory 

in respect to our experimental results. 

 

Fig. S1: Comparison of the extended PINEM theory and the conventional PINEM theory. 

Calculation of the electron energy spectrum by both theories for the same laser field shown in orange 

in both panels. The extended theory shows a coupling constant that is roughly twice that of the 

conventional theory. The blue curve presents the experimental electron energy spectrum at zero delay. 

The conventional PINEM theory does not match the experimental data as well as the extended 

PINEM theory. 
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Note 2: Electric field and coupling constant for prism geometry 

In this section, we introduce the full analytical expression for the electric field interacting 

with the electron in our experiment. Then, we incorporate this field into the coupling constant 

developed in the previous section and present its closed form formula. 

2a. Derivation of the electric field 

In our experiment, the electron and laser pulses are two moving Gaussian pulses – a 

Gaussian beam in the transverse directions and a Gaussian pulse shape in both propagation 

direction and time. As our structure is     mm long and the Rayleigh length of the laser is 

   
   

 

 
   cm (for spot size (radius) of 50    and wavelength     nm), we neglect the 

divergence of the Gaussian beam (i.e., curvature       ). Furthermore, we can 

approximate the Gaussian beam width to be the waist of the beam, i.e.,        . Since the 

interaction is not y-dependent in our case, we simplify our discussion to the     plane (see 

definition of axes in Fig. S2). 

The incident electric field is a Gaussian pulse moving downwards at a small angle   

relative to the z axis. The pulse enters the prism after it is refracted from the hypotenuse. In 

order to treat the laser inside the prism as a Gaussian pulse, we first have to prove that 

      (see definition in the zoom-in of Fig. S2). The resulted laser pulse shape inside the 

prism is Gaussian with a projected spot size   
  (definition below). The distances related to    

and    are: 

(S18)       
                     

 

 
     

      

where        is the incident angle to the prism,         
 

 
       is the refraction 

angle (Snell’s law),    is the incident laser spot size (radius) and   
  

    

     
   is the 

emerging laser spot size inside the prism. 
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Figure S2. The incident electric field: a Gaussian pulse. An illustration of the prism setup and 

propagating laser pulse used in our experiments. 

Following these relations: 

   
  

 
      

  

 

     

     
 

   

 

    

     
 

   
 

 
                                (S19) 

Therefore, As stated above, after a short time, the laser pulse shape is a Gaussian with a 

projected spot size   
 . Now, the electric field inside the prism can be expressed as: 

                     
                                                (S20) 

where       
          is the Gaussian envelope of the field and       ) are the axes of the laser 

propagating inside the prism (see Fig. S2) given by 

                                             (S21) 

The Gaussian envelope is therefore given by 

         
                  

   
    

    
 (

  
  
   )

 

    
  
   (S22) 
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where   
  is the incident field amplitude,     is the Fresnel transmission coefficient of the first 

prism’s surface,   
  is the laser’s spot size (radius) inside the prism,    

 

 
  is the velocity of 

light inside the prism (        at        ) and    is the laser’s pulse duration. The 

transmission coefficient     is given by: 

    
       

        √          
                       (S23) 

Following this and assuming that   is small enough such that the laser is going through 

total internal reflection, the field becomes evanescent outside the prism (   ). The field is 

then defined by its profile on the prism surface (at    ) with a new complex wavevector. 

The parallel component (  ) remains continuous and the perpendicular (  ) is changed: 

           
 

  
                  √                  (S24) 

where      √            and    
 

 
 is the wave vector in vacuum. Finally, the z-

component of the electric field in vacuum, after propagating through the prism, is given by  

           
          

                                     (S25) 

   
  

 (
     

  
   )

 

    
  
       

                                   
               

where we define   
     

       as the projected spot size on the prism surface The envelope 

amplitude is defined as                  
  

 (
     

  
   )

 

    
  
       

     with   
     

      . 

   
  is the Fresnel transmission coefficient of the of the evanescent electric field z-component 

from the prism to vacuum, and is given by
11

: 

   
  

      √         

      √          
          (S26) 
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In PINEM interactions we are only interested in the z-component of the field, as shown in the 

previous section. In the following section we incorporate the electric field computed above 

into the time-dependent coupling constant developed in the previous section. 

2b. Derivation of the coupling constant  

In this part, we derive a closed formula for the coupling constant which describes results 

of our experiment. We begin from Eq. S7 and first we simplify the electric field expression: 

  (      
  
  

  
  )    

       
 (

      
  

 
  

  
  )

 

    
  
        

     
 (   

 
  

)      
  

   
       

 ((     
  
  

)      )

 

     
   

   
       

   ⁄   
    

  
(     

  
  

)
         (S27) 

where we used            
 

  
    . Expressing the field in terms that resemble the well-

known Cherenkov emission angle formula
12

 (with    
  

 
): 

     
  

  
      

 

   
      

 

   
 .                           (S28) 

Therefore, we get: 

  (        
  

  
  )    

  
 ((     

 

   
)      )

 

     
   

   
        

           
    

  
(     

 

   
)    

           

(S29) 

Arranging the above expression in orders of    gives: 

  (      
  

  

  
  )    

          
        

        (S30) 

where we define: 

  
  

(     
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Now, we can calculate the integral in         : 

         
  

  
∫   (      

  
  

  
  )

 

  
    

    
 

  
        ∫     

        
  

  
   .    (S32) 

Note that 

∫     
        

  

  
    ∫  

 (   
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 (
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(
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∫  
   

 (   
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    ,   (S33) 

and using the Gaussian integral ∫           

  
    √     with     

  and   
  

   
 , the 

integral above reduces to 

∫     
        

  

  
    

√ 

  
 
(

  
   

)
 

     (S34) 

Finally, we arrive at the final expression for  : 

         
√ 

  

    
 

  
 
(

  
   

)
 
        .    (S35) 

For convenience, here are the important quantities that were defined during the derivation and 

appear in Eq. S35: 

  
     

             (S36) 
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Note: in perfect phase-matching condition, i.e.      
 

   
, we have   

  
 

  
     and     . 

Therefore, the final expression for          reduces to: 

         √ 
    

 

  
          

      (S37) 
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Note 3: Comparison of quantum and classical interaction 

In this section, we show the similarities and differences between two different theories for 

the electron–laser interaction, one of which is a derivation based on quantum mechanics and 

the second relies on classical electrodynamics. First, we consider a classical interaction using 

the Lorentz force. Then, we describe the quantum interaction (conventional PINEM theory) 

and compute its envelope analytically. Finally, we compare the two theories and discuss the 

similarities and differences between them.  

3a. Classical interaction  

We describe the electron as a classical point particle travelling in an electric field and aim 

to find the change in its kinetic energy during the interaction. The equation for the electron 

velocity under an electric force parallel to its direction of motion is given by the Lorentz 

force: 

  
  

  
     {  ̃     

    },    (S38) 

where  ̃     is the electric field phasor, as denoted in the PINEM derivation in Section 1. We 

calculate the change in electron velocity by integration over time: 

        ∫    {  ̃ (    ) 
    }.   (S39) 

Assuming the change in electron velocity is negligible during the interaction, i.e.,      

        , we can write   
    

  
 , where    is the initial position of the electron (at   

 ). Under this approximation, the change in the electron kinetic energy can be written as 

          , and changing variables from   to   in Eq. S39 yields 

      ∫    {  ̃     
  

 

  
      }.   (S40) 

We define      ∫   ̃     
  

 

  
 
, and therefore,       {    

 
 

  
  }. Note that    is 

equal to the coupling constant   (see Eq. S13 in Section 1a) up to a factor of the photon 
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energy; namely,       . To complete the derivation, we assume that the initial electron 

position    is uniformly distributed over one optical wavelength/cycle of the laser field and 

thus,     (  
    

 
)           . The probability density of the energy change can then be 

calculated: 

                
         

|
    
   

|
|

          

 
 

  |  |√  (
   

 |  |
)
 
.  (S41) 

Equation S41 describes the electron energy distribution in the classical case. To enable a 

comparison with the quantum theory presented later, we convert the energy variable     to a 

continuous dimensionless variable   by setting        , which, in the quantum case, 

denotes the net number of photons emitted/absorbed during the interaction. Finally, the 

classical probability for the electron to change its kinetic energy by         is given by 

              
 

   √  (
 

  
)
 
.    (S42) 

One important difference to mention is that the variable   is continuous in the classical sense, 

whereas in the quantum description it represents the number of photons and is thus discrete.  

3b. Quantum interaction  

We describe the quantum electron–laser interaction using the framework of conventional 

PINEM
 
theory. Under a conventional PINEM interaction with a CW laser

1-4
, the probability 

for an electron to gain/loss an energy quanta of         is given by    |  |
 , where 

                 | |  are the probability amplitudes depending on the coupling constant   

defined in Eq. S13 in Section 1a. The peaks in the measured electron energy spectrum are 

determined by these probabilities; namely,      
   | | . 

 To compare the quantum and classical descriptions, we present these probabilities in 

the form of a carrier-envelope function. The carrier is responsible for the peaks, while the 
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envelope can be compared to the classical point of view. The electron spectrum (assuming a 

monochromatic interaction) can be described by section 1 of this supplementary by     :  

     
 

  
∫                   

  
,    (S43) 

where the electron amplitude      is a function of a continuous energy variable  . Here,   is 

the laser photon frequency, and we assume          for simplicity. We are interested in 

calculating the spectral distribution of an electron after a strong interaction, i.e., an interaction 

described by a large coupling constant    . By using the method of saddle point 

approximation (SPA), the asymptotic approximated solution is given by 

     √
   

        
      

      ,    (S44) 

where      
 

  
        and                      . We find that there are infinitely 

many saddle points    satisfying the relation           
 

    
. This is true for large   

values, such that        , as in the regime we are currently analyzing. Indeed, for large 

 , most of the spectrum is in this range, and we notice that it is also possible to use the SPA 

to analyze the edges of the spectrum. The approximated solution is given by the following 

infinite sum: 

(S45) 

     √
 

  
∑          
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)
 

)
    

   (       (
 

  
)    √  (

 

  
)
 

 
 

 
). 

This is a form of the Debye approximation for a Bessel function. Squaring the above 

expression yields the probability density of gaining/losing an energy of    . Finally, we 

obtain the following function for the electron probability amplitudes under the SPA:  

(46S)         
       

 

  
(  (

 

  
)
 

)
 

 

 

    (       (
 

  
)    √  (

 

  
)
 

 
 

 
)  
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The spectrum is therefore governed by an envelope function (  √  (
 

  
)
 

)

  

.  

3c. Similarities and differences between the two descriptions 

Finally, we compare the quantum and classical descriptions. The classical result given in Eq. 

S42 is found to be one half of the quantum envelope function derived via the SPA (Eq. S46). 

This factor of two can be explained by performing an average over all discrete peaks of the 

squared cosine terms. In Fig. S3, we show a comparison of the classical and quantum 

approaches for this electron–laser interaction. 

 

Figure S3. Comparison of the classical and quantum descriptions for electron–laser 

interactions. (a) The quantum theory (conventional PINEM) alongside its saddle point approximation 

(SPA), plotted for     . The SPA graph provides a good estimation for the PINEM solution in the 

range | |   | |. The SPA’s quantum envelope is also presented. The classical result is one half the 

quantum envelope, appearing as an average over the quantum peaks. (b) Electron energy loss 
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spectrum after the interaction with                  around the point      | |. Whereas the 

classical theory predicts a spectrum maximum at this exact point (     eV in our graph), the real 

maximum is obtained earlier. 

 

An important difference between the classical and quantum theory can be found at the far 

edges of the spectrum (   | |); the classical spectrum is identically zero in this range, 

whereas the quantum spectrum yields finite values. Consequently, we expect the quantum 

theory to be important for describing the exact electron acceleration/deceleration and 

especially for analyzing the regimes of maximal acceleration/deceleration. This comparison 

emphasizes the importance of the quantum theory for laser-based electron acceleration, as in 

dielectric laser accelerators (DLA)
7
. 

 

To summarize this section, we note that the usage of SPA provides a connection between 

the quantum and classical descriptions for electron–laser interactions. Both approaches yield 

envelopes that are identical up to a factor of 2 over the range    | |. Most differences 

emerge when fine features (e.g., the quantized energy peaks) are examined, as expected when 

one compares a classical and a quantum theory.  
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Note 4: Intuition for the phase-matching effect 

In this section, we provide intuition for the phase-matching condition needed to achieve 

efficient coupling in electron–light interactions. The key factor of the record strong 

interaction achieved in this work is maintaining this condition satisfied over long distance. 

In general, free electrons are slower than light in free space, leading to an energy–

momentum mismatch that prevents a strong interaction. In this scenario, the electron interacts 

with alternating field directions during its motion, and the net effect cancels out after each 

optical wavelength/cycle. In our experiment, the electron velocity    is matched to the light 

phase velocity along the electron trajectory     , and thus, the electron interacts with a 

constant field instead of an alternating one, which enables the interaction to accumulate for a 

long distance. Thus, the interaction becomes stronger by orders of magnitude, with a net 

effect that increases linearly with the interaction length. To match the phases of the electron 

and light waves, the light is slowed down by propagating through a medium (e.g., the prism). 

For simplicity, it is convenient to discuss plane waves instead of the Gaussian pulses that 

are used in the experiment (for the full treatment of PINEM with Gaussian pulses see 

Sections 1 and 2). In this section, we describe the laser by a localized plane wave:  ̃     

  
       with frequency    | |  and   

    for  
 

 
   

 

 
.   

  is the electric field 

amplitude after going through the prism and we denote the interaction length by  , which 

relates to the projected spot size   
   on the prism's surface (see definitions of     and   

   in 

Eq. S25 of Section 2a below). Plugging this field into Eq. 1 of the main text (the same as Eq. 

S13 in section 1c here), we can calculate the coupling constant explicitly: 

       
    

 

  
          ∫  

 (   
 

  
)  

      

    
.  (S47) 

We define       
 

  
  as the phase-mismatch parameter and solve the integral to obtain  
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              (

   

 
)   .   (S48) 

The phase-matching condition can be identified as      (       ). This condition 

requires    to be larger than the wave-vector magnitude in vacuum (      ) because the 

electron is slower than light (      .Thus, to satisfy this condition, we must use an 

evanescent wave so the electric field takes the form          
            (we set      

and        for     ). Our coupling constant becomes 

      
    

 

  
          (

   

 
)        (S49) 

where    √   
    

 .  

In Fig. S4, we show the coupling constant (| |) as a function of    and  . For perfect 

phase-matching (    ), | | increases linearly with the interaction length  , whereas in the 

phase-mismatch scenario we see the expected periodic behavior (Fig. S4a). For a fixed 

interaction length, | | changes periodically as a function of    with decreasing values as we 

deviate from perfect phase-matching, i.e.      (Fig. S4b). 

Figure S4. The dependence of the coupling constant on the phase-mismatch and the interaction 

length. (a) The coupling constant (| |) as a function of the interaction length   for a phase-matched 

(blue) and phase-mismatched (orange) interaction. (b) The coupling constant as a function of the 

phase-mismatch parameter (  ). The bandwidth of the phase-matching condition (width of main lobe) 

is inversely proportional to the interaction length L, meaning smaller interaction lengths “accept” 

more phase-mismatch than longer interaction lengths. 
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In comparison with all previous PINEM experiments, we design our experimental scheme 

such that the entire field has a single    value throughout the whole interaction length.  From 

simple geometrical calculations of our setup, we obtain            (see notations in Fig. 

2 of the main text or Fig. S2 here), which reduces the phase-matching condition to a formula 

that resembles the Cherenkov emission angle formula (using        ): 

      
 

   
.      (S50) 

The phase-matching condition can also be understood as arising from the conservation of 

energy–momentum between the electron and the light. It is the most efficient energy transfer 

mechanism between the electron and light, in the sense that the spatial Fourier space 

representation of the pump laser field inside the prism is described by a single                                          

        component that carries all of the field energy. Using the precise electron 

alignment and the field tilt by the prism, we match the electron velocity and this exact    

value so that the interaction strength is maximized. 

To understand the importance of satisfying the phase-matching condition over a long 

distance in PINEM experiments, it is valuable to compare our experimental scheme with 

previous PINEM experiments. Previous PINEM interactions involved localized nearfields, 

providing much weaker interactions since the interaction length is cannot exceed the single 

optical wavelength (typically hundreds of nanometers). Due to their limited interaction 

length, all previous PINEM experiments can be understood as variants of laser-driven 

quantum transition radiation or quantum stimulated transition radiation
4,5,6

, in which the 

electron wavefunction alters the interaction (e.g., quantized energy exchange). In contrast, we 

report here of the first extended interaction measured in UTEM with much longer interaction 

over hundreds of optical wavelengths/cycles (hundreds of microns). Our longer interaction 

length and duration is the reason our experiment can be titled as a type of stimulated 
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Cherenkov experiment (also called inverse-Cherenkov effect) near a planar interface. As with 

the PINEM analogies of transition radiation, we find a dependence on the electron 

wavefunction.  

The comparison between the classical transition radiation and Cherenkov radiation (i.e., 

spontaneous process) perfectly corresponds to the comparison between the conventional 

PINEM experiments localized interactions and the extended phase-matched PINEM 

experiment in this work. Note that in general transition radiation effects are typically weaker 

than Cherenkov radiation effects because of the limited interaction length. The Cherenkov 

phase-matched interaction that is maintained over hundreds of microns is what makes 

classical Cherenkov-type effects stronger than transition radiation effects. In complete 

analogy, the phase-matching makes our PINEM Cherenkov-type interaction stronger than all 

previous PINEM experiments that were all transition-radiation-type.  

Interestingly, despite this classical-quantum comparison, the quantum case shows unique 

features that do not have a classical analogue. For example, the strong energy exchange in 

our inverse Cherenkov quantum interaction reveals a wide energy plateau consisting of 

quantized energy peaks – in contrast to a flat plateau in the classical case. 
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Note 5: Additional information on the data analysis 

In this section, we describe the necessary data analysis that we had to perform on the raw 

experimental data. The three key challenges were as follows.  

5a. Correlations to combine multiple energy spectra 

The strong interaction leads to electron energy spectra that are wider than the physical 

size of the detector, i.e., the electron energy loss spectrometer (EELS). One could change the 

detector energy dispersion (focusing the electrons on a smaller part of the spectrometer), but 

that would cause a reduction in the energy resolution due to the finite number of pixels in the 

detector. Instead, we used correlation methods to reproduce the full image of interaction with 

a sufficiently high resolution. We collected the data (e.g., Fig. 3b and 5a-b) in several 

segments, with a partial overlap. We use these partial overlaps to combine all the acquired 

spectra into one full spectrum using correlation. This method was proved useful to account 

for possible inaccuracies of the detector movement between subsequent measurements that 

influence the measured energy values. In the end of each such process, we have the tailored 

full spectrum describing the full image of the interaction that occurred.  

5b. Fixing fluctuations in the time scan data 

A time scan is composed of several electron energy spectra, each describing the 

interaction with respect to different time delay between the electron and the laser pulses. The 

result is a map of the electron energy spectrum as a function of the delay between the electron 

and laser pulses, as presented in Fig. 3 and 5c. 

The long acquisition times cause shifts in the electron energy spectra due to inevitable 

instabilities. These shifts are especially important when tailoring several spectra segments 

together (as explained in Section 5a above) or when performing time scans. A time scan 

acquisition takes much longer than a single spectrum acquisition, therefore, fixing system 
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fluctuations is crucial.  The two obstacles we had to overcome were (1) normalization of each 

spectrum in the time scan, and (2) energy shifts during the measurement due to long 

acquisition times. 

The experimental time scan map presented in Fig. 3a (or larger in Fig. 5c) of the main 

text underwent several steps of signal processing. Since each row in the time scan is a 

spectrum for a specific delay, it should represent the electron interaction probability, hence 

needs to be normalized. For most of the time scan we could easily normalize the integration 

to unity. However, for delays with strong interaction a significant part of the spectrum 

exceeded the detector limits, and could not be normalized appropriately. To ensure good 

image contrast, we normalize these partial spectra with the result of its integration along the 

measured energy range (-100 eV to 100 eV). To compensate over the energy fluctuations, we 

determined the zero energy loss position for each delay and shift the energy axes accordingly.  

Regarding fluctuations in the electron current, the correction methods used in previous 

papers on PINEM (e.g., refs. 4-9) are not effective here, because the energy spectrum is wider 

than the detector size. This poses extra challenges in data analysis, since we cannot always 

normalize the total probability to account for the fluctuations in the electron current, as stated 

above. 

5c. The initial electrons’ classical probability density 

In this section, we discuss the dependence of the coupling constant on the transverse 

spatial coordinates, which in the special case of our prism grazing-angle experiment captures 

the effect of the evanescent tail. We show why it is crucial to consider this spatial dependence 

in our setup and observations. This analysis may also be valuable for future grazing-angle 

experiments.  
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In our experiment, the interaction between the electron and the laser is strongly affected 

by the distance between the electron and the interface. This distance (denoted by  ) has a 

huge impact on the coupling constant
3
 since the evanescent field exponentially decays in this 

direction. To fully account for the spatial dependence of the coupling constant, we also need 

to consider the transverse spatial dependence of the electron beam. To do that, we introduce 

the normalized initial electrons probability density            , It includes the spatial 

distribution of the electron in the transverse directions    , the propagating Gaussian electron 

pulse in the longitudinal direction (depends solely on         ) and the electron 

incoherent energy broadening, called the zero-loss peak (ZLP).  

Now, we shall complete the discussion in Section 1b and provide the master equation for 

        from Eq. S12. We consider a special case (that can be directly generalized) in which 

the             can be decomposed to                           .      denotes 

the ZLP,        denotes the static the transverse directions probability density in    , and 

     denotes the spatiotemporal incoherent probability density in the longitudinal direction. 

Finally, we arrive at the master equation for extended PINEM interactions by substituting 

the decomposed expression of             into Eq. S12 and also integrating over the 

transverse directions    . Therefore, we get:  

        ∭                                               ,  (S51) 

where                     ∑   
                         

     is given in Eq. S11 and 

  
                   

   |        |  is the coherent probability to gain/loss energy quanta 

of    .  

In the case of our prism experiment, we can assume the spatiotemporal parts,         and 

    , to be Gaussian functions. To keep the discussion as much general as we can, we we 
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shall keep using the energy general function by     . Therefore, the initial electrons 

probability density takes the form 

                  
 

               

  
  

 
  

    
 

,                         (S52) 

Where      
 

 
     with   being the overall normalization factor of the spatiotemporal 

gaussians,       ) describe the center of the electron beam in the x-y plane,    is the electron 

spot radius (where the amplitude falls to     of the maximum) and     is the electron pulse 

duration (standard deviation). Note that we use standard deviation notation for temporal 

quantities and radius/waist notation for spatial quantities, for both the electron and laser. 

Since the electric field in our experiment is independent of  , the   dependence of 

            averages out in the integration. Now we can substitute the above expression 

(Eq. S52) in the master equation (Eq. S12) and we arrive to the master equation describing 

our interaction. Note the total probability is preserved, namely, ∫                 . 

This holds since             is normalized and ∑       (from the Bessel identity
13

 

∑   
        . 

The parameter    controls the distance of the electron beam from the prism, and thus, 

large    will suppress the interaction. The lower limit of the integration,   , comes from the 

spread angle of the electron beam     (measured to be ~       in our experiment) that 

truncates the interaction distance. All electrons that are closer than     
      

 
      

      to the prism are being blocked by the prism and do not reach the detector at all 

(       
       is the prism side's length). Thus, we integrate from    to infinity and 

normalize    accordingly to preserve the probability. In the experiment, we blocked half of 

the electron beam to balance a strong enough signal with the closest proximity to the prism; 

namely, we set      . From fitting our extended PINEM model to the experimental data 
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(see Section 5e), we suspect the electron beam might have been further away from the prism 

than assumed, putting numbers we get             . This is just an estimation since 

we have a lot of unknown parameters to fit and some of them are entangled (as explained in 

Section 5e). Because of the evanescent decay of the field, the system is very sensitive to this 

distance and that's what makes the consideration of the spatial dependence of the coupling 

constant crucial for this work. Figure S5 demonstrates the effect of this spatial expansion and 

its significant impact on the electron energy spectrum.  

 

Figure S5. Effects of the electron beam transverse distribution in grazing angle electron–laser 

experiments. (a) The quantum envelope of the PINEM interaction with and without integration over 

the electron distribution along the x-axis. This integration transforms the two sharp peaks into two 

smooth peaks and brings them toward the center, as shown in the top three panels (left to right). The 

rightmost graph resembles the shape of our experimental spectrum envelope, giving validity to our 

expansion of the theory. Note that the sharp points in the left and center panels of (a) are in fact 

divergences, and the height differences correspond to the weight they receive in the integration, as can 

be seen from Eq. S52. (b) Theoretical energy spectrum for the interaction between coherent free 

electrons and an electromagnetic field with an electron beam that is close to the prism (blue) versus 

electron beam that is far away from the prism (orange). We can see the exponential decrease of the 

interaction strength with the electron beam distance, as expected from the nature of the evanescent 
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field. This figure highlights the importance of aligning the system with great precision, so the electron 

will travel as close as possible to the surface of the prism for the longest possible distance. 

5d. Side lobes in the time scan map 

In practice, the laser's temporal dependence is not a perfect Gaussian. We performed an 

autocorrelation measurement and note that it contains two symmetrical small side lobes from 

each sides of the central Gaussian peak which possibly arises from our optical parametric 

amplifier (OPA). Since our interaction is very strong, we observed the interaction between 

the electron and the much weaker side lobes related electric fields, compared to the central 

peak related electric field. This result is described in Fig. 3 of the main text. We modeled 

these side lobes as two symmetrical small-amplitude Gaussians, delayed by    
     relative to 

the center Gaussian with an amplitude denoted by   
     and pulse duration denoted by   

    . 

The resulting electron probabilities (defined below Eq. S11 in the end of Section 1a) is the 

sum of the center peak interaction and these two side lobes contributions. Thus, we get 

  
                 

 ( |              (       
    )        (       

    )|)     (S53) 

where    describes the central peak interaction and        describes the side lobes 

contributions. 

5e. Fitting theory to the experimental results 

We fit the experimental time scan presented in Fig. 3a (and Fig. 5c) of the main text with 

the theoretical time scan computed from Eq. 4 of the main text (same as Eq. S12 in Section 

1a here). The estimated parameters are presented in Table S1 below. The fit also gives us 

several quantities that we were unable to measure directly. We employed an optimization 

method using nonlinear programming solver with the following parameters: the laser 

amplitude      
      , laser pulse duration   , laser spot size   , electron pulse duration 

  , and electron beam size   . We also include three parameters to describe the laser 

temporal side lobes (discussed in Section 5d): amplitude   
    , pulse duration   

    , and time 
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delay   
    . The final result is presented in Fig. 3d of the main text and the fit parameters are 

given here in Table S1. 

Name Variable Value FHWM Value 

Electron pulse duration    179 fs 421 fs 

Electron beam radius     100 nm 167 nm 

Laser pulse amplitude    1.680×10
6
 V/m - 

Laser pulse duration    273 fs 642 fs 

Laser waist    50.21 μm 83.61 μm 

Side lobes amplitude   
     0.0472×10

6
 V/m - 

Side lobes duration   
     823 fs 1939 fs 

Side lobes delay   
     664 fs - 

 

Table S1. The optimal fit parameters found from fitting the experimental time scan (in Fig. 3a of the 

main text) with the extended PINEM theory (in Fig. 3d of the main text). Note that we use standard 

deviation notation for temporal quantities and radius/waist notation for spatial quantities, for both the 

electron (defined in Section 5c) and laser (defined in Section 2). To compare with common 

experimental notation full-width half-max (FWHM) we add a “FWHM value” column which is 

calculated using       √     and       √     . Also, note that the waist of the laser is 

much larger than the electron beam radius, and we take it with higher precision since each micron 

alters the interaction significantly in our extended phase-matched interaction. 

These parameters match with the experimental values measured in other ways: estimated 

laser pulse duration of 600 fs FWHM, side lobes delay of 2 ps FWHM, waist of the laser ~ 

100 μm). The field amplitude found from the optimization matches (to within 25%) with the 

experimental value when considering the exponential decay of the field, calculated at a 

distance of 500 nm from the prism surface. The field amplitude is extracted from the power 

measured before the laser couples to the microscope, corresponding to a pulse energy of 250 

nJ (laser average power of 250 mW and repetition rate 1 MHz).  
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Note 6: Finite-difference time-domain (FDTD) simulation 

In this section we provide a Finite-difference time-domain (FDTD) simulation of our 

experimental setup as described in the main text. The electric field propagates inside the 

prism and incidents the prism's surface above the critical angle. The emerging evanescent 

wave in vacuum interacts with the free–electron. This simulation visualize why we had to 

extend the conventional PINEM theory to include the spatiotemporal dependence of the 

electric field and the electron, thus, fully describing our extended interaction. 

 

Figure S6. Finite-difference time-domain simulation of our setup. (the simulation movie is 

attached as a separate file). The simulation assumes a right-angle glass prism with refractive index 

1.513 @         ,       leg size, and base angle of 45 . The laser undergoes total internal 

reflection inside the prism and generates an evanescent field that interacts with the electron that passes 

nearby. 
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