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Attosecond coherent control of free-electron wave
functions using semi-infinite light fields
G.M. Vanacore1, I. Madan1, G. Berruto1, K. Wang1,2, E. Pomarico1, R.J. Lamb3, D. McGrouther3, I. Kaminer1,2,

B. Barwick4, F. Javier García de Abajo 5,6 & F. Carbone1

Light–electron interaction is the seminal ingredient in free-electron lasers and dynamical

investigation of matter. Pushing the coherent control of electrons by light to the attosecond

timescale and below would enable unprecedented applications in quantum circuits and

exploration of electronic motions and nuclear phenomena. Here we demonstrate attosecond

coherent manipulation of a free-electron wave function, and show that it can be pushed down

to the zeptosecond regime. We make a relativistic single-electron wavepacket interact in

free-space with a semi-infinite light field generated by two light pulses reflected from a mirror

and delayed by fractions of the optical cycle. The amplitude and phase of the resulting

electron–state coherent oscillations are mapped in energy-momentum space via momentum-

resolved ultrafast electron spectroscopy. The experimental results are in full agreement with

our analytical theory, which predicts access to the zeptosecond timescale by adopting semi-

infinite X-ray pulses.
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The scattering of single photons by free-electrons is extre-
mely weak, as quantified by the Thomson scattering cross-
section, which for visible frequencies is of the order of

10−29 m2. Additionally, direct photon absorption or emission by
a free-space electron is forbidden due to energy-momentum
mismatch. To circumvent these limitations and increase the
probability of electron–photon interaction, a variety of methods
have been devised1. For example, the Kapitza–Dirac effect
involves a conceptually simple configuration in which an electron
intersects a light grating produced by two counter-propagating
light beams of the same frequency2,3. The interaction is then
elastic and requires the electron to undergo an equal number of
virtual photon absorption/stimulated-emission processes. When
the absorbed and emitted photons differ in energy, the interaction
results in frequency up- or down-conversion4,5, which is the basis
of undulator radiation and free-electron lasers6–8.

A direct single-photon emission/absorption process can also
bridge the energy-momentum mismatch if either the electrons are
not free (for example, in photoemission from atoms/molecules9

and solid surfaces10) or when a scattering structure generates
evanescent light fields11 in the vicinity of the interaction volume.
Such an electron–photon–matter interaction creates optical field
components with a frequency–momentum decomposition that
lies outside the light cone, allowing emission/absorption to take
place. This type of interaction, which is forbidden in free-
space12,13, is regularly exploited for generating radiation and for
accelerating charged particles. Recently, it has also prompted the
development of photon-induced near-field electron microscopy
(PINEM)11,14–16. In PINEM, an energetic electron beam interacts
with the evanescent near-fields surrounding an illuminated
material structure. The interaction is particularly strong when the
structure supports surface-plasmon polaritons (SPP) that are
excited by short light pulses17,18. Optical near-fields then produce
coherent splitting of the electron wave function in energy space,
giving rise to Rabi oscillations among electron quantum states

separated by multiples of the photon energy19. The microscopic
details of the process are encoded in the electron wave function,
which can be revealed via ultrafast electron energy-loss spectro-
scopy (EELS) and controlled using suitable illumination
schemes20,21.

In this work, we adopt a more general method for controlling
and manipulating the strength of electron–photon interaction.
Instead of relying on localized near-fields (for example, plas-
mons), which inevitably depend on the intrinsic cross-section
associated with the optical excitation of confined optical modes,
we make use of a spatially abrupt interruption of the light field in
free-space, also referred to as semi-infinite field22–28 (see Fig. 1a).
Such a boundary condition can be attained by sending the elec-
trons through a light beam that intersects a refractor, an absorber,
or more efficiently, a reflecting mirror along the optical path.
When the light wave extends only over half-space, the energy-
momentum conservation constraint is relaxed and
electron–photon interaction can take place (see Fig. 1b and
Supplementary Fig. 1) with an efficiency exceeding that produced
by a resonant plasmonic nanostructure. Using this configuration,
we have been able to simultaneously observe the quantized
exchange of both energy and transverse momentum between a
free-electron and a light wave, revealing the primary role of the
quantum nature of the electron–light coupling at optical fre-
quencies and above, and we provide a full description of the
strength of interaction within parameter space.

Within this scenario, we demonstrate attosecond coherent
control of the electron wave function by appropriately synthesiz-
ing a semi-infinite optical field using a sequence of two mutually
phase-locked light pulses impinging on a mirror and delayed in
time by fractions of the optical cycle (see schematics in Fig. 1c).
The profile of the field resulting from such a temporal combina-
tion of pulses changes the energy and momentum of an electron as
it traverses the interaction volume. The energy-momentum dis-
tribution of electron states is recorded as a function of the delay
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Fig. 1 Experiment probing free-electron interaction with semi-infinite light fields. a Ultrashort 200 keV electron pulses travel along the z axis and impinge
on the surface of a Ag/Si3N4 thin bilayer, which is mounted on a double-tilt holder able to rotate around the x (angle α) and y (tilt angle ϑ) axes. Light
propagates within the y–z plane, incident with an angle δ ~ 4–5° relative to the z axis and then reflected from the Ag surface. The resulting electron–photon
interaction is probed by monitoring electron energy-loss spectra as a function of geometrical parameters and light properties. b Description of the
electron–light interaction here explored. The breaking of translational invariance produced by light reflection enables photon absorption or emission by the
electron corresponding to a quantized energy and momentum exchange. c Description of the three-pulse experiment used for coherent modulation of the
electron wave function. Electrons interact with an appropriately synthesized optical field distribution produced by two mutually phase-locked photon pulses
whose relative phase is changed by varying their relative delay Δ2−Δ1
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between the two photon pulses via momentum-resolved fs-EELS
performed in an ultrafast transmission electron microscope29–31,
revealing the light-induced modulation of both amplitude and
phase of the electron wave function. In our scheme, the coherent
control of the electron wave function is mediated by two tempo-
rally delayed pulses at the same position, in contrast with recently
reported configurations20,21,32–34 where the electron modulation
was determined by the light interaction at different spatial posi-
tions along the electron pathway. This allows us to shift the
interaction to the temporal domain instead of the spatial domain
and thus taking full advantage of the intrinsic longitudinal
coherence of the single-electron wave function while allowing us
to explore other interesting scenarios such as the attosecond-
nanometer modulation of plasmonic near-fields. Our experi-
mental results are successfully described within a general theore-
tical framework for electron–light interaction, which is able to
further predict the ability of this method to achieve coherent
control over the electron wave function down to the zeptosecond
regime using semi-infinite X-ray fields.

Results
Free-electron interaction with a semi-infinite light field. The
translational symmetry of a propagating electromagnetic wave is
broken by refraction, absorption, or reflection at a material
interface. In our study, we use a Ag thin film (43 nm) deposited
on a Si3N4 membrane (30 nm) acting as a mirror. As

schematically depicted in Fig. 1a, the mirror is mounted on a
double-tilt holder able to rotate around the x (angle α) and y
(tilting angle, ϑ) axes. To demonstrate that electron–photon
interaction can be strongly enhanced by the semi-infinite field
effect, we display EELS spectra recorded as a function of laser
field amplitude for a fixed orientation of the mirror (Fig. 2b), and
as a function of mirror tilting angle ϑ for fixed field amplitude
(Fig. 2a), using p-polarized light in all cases (incident field parallel
to x axis). Following the interaction, the zero-loss peak (ZLP) at
an energy E0= 200 keV is redistributed among sidebands at
multiples of the incident photon energy ± ‘�hω, corresponding to
energy losses and gains by the electrons. At large values of both ϑ
and the light field amplitude, the electron distribution is almost
completely transferred toward high-energy spectral sidebands
‘j j � 1ð Þ, leaving a nearly depleted ZLP and revealing a high

probability for multiphoton creation and annihilation.
The modulation of the EELS spectra is determined by

the integral of the optical electric field amplitude EzðzÞ along
the electron-beam direction z. Following previous works15,16,18,
the strength of the electron–photon interaction can be quantified
in terms of the parameter (see Methods)

β ¼ ðe=�hωÞ
Z

dzEzðzÞe�iωz=v: ð1Þ

In particular, the fraction of electrons transmitted in the ‘th
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Fig. 2 Energy exchange during electron–light interaction. a Sequence of measured EELS spectra (color map) plotted as a function of increasing angle ϑ. We
use p-polarized light (incident field along x axis), α= αC, a peak field amplitude of 12.8 × 107 V/m, and light and electron pulse durations τL= 430 fs and
τe= 410 fs. Sidebands at energies ± ‘�hω relative to the zero-loss peak (ZLP) are visible, where ‘ is the net number of exchanged photons. b Sequence of
EELS spectra measured for increasing light field amplitude with fixed tilt angle ϑ= 35°. c Spectra selected from a, measured at ϑ= 9° (blue curve) and ϑ=
30° (red curve), showing a strong redistribution of the electron density toward the high-energy sidebands for large tilt angle. d–f Simulated EELS spectra
corresponding to the experimental conditions of a–c (see Methods for details of calculations)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05021-x ARTICLE

NATURE COMMUNICATIONS | (2018)9:2694 | DOI: 10.1038/s41467-018-05021-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


sideband is approximately given by the squared Bessel function

P‘ ¼ J2‘ 2 βj jð Þ: ð2Þ

The spectral distribution of the electron density can be thus
changed either by tilting the mirror (Fig. 2b) or by increasing the
laser power (Fig. 2c), producing quantitatively similar effects.
Considering the large permittivity (≈−30+ 0.4i) of silver at the
employed photon energy (ℏω ≈ 1.57 eV) and the small optical
skin depth (≈11 nm for 1/e decay in intensity) compared with the
silver layer thickness, the mirror reflects >98% of the incident
light. Thus, neglecting light penetration inside the material, the
electric field along the electron path can be considered to be made
of incident (i) and reflected (r) components as EzðzÞ=
Ei
ze

ikizz þ Er
ze

�ikrzz
� �

θð�zÞ, where the step function θ(−z) limits

light propagation to the upper part of the mirror and ki=rz is the
projection of the incident/reflected light wave vector along z.
Inserting this field into Eq. (1), we find

β � ðie=�hωÞ E i
z

ω=v � kiz
þ Er

z

ω=v þ krz

� �
; ð3Þ

which makes the interaction strength finite and explicitly
dependent on the field amplitude and tilting geometry. We
further present in the Methods section a detailed analytical theory
extended to deal with arbitrary pulse durations, two light pulses,
and real material mirrors, used for comparison with the
experimental results in the figures that follow. Nonetheless,
Eq. (3) provides a satisfactory level of description that allows us to
understand the data in simple terms, especially when the mirror is
considered to be perfect (see Supplementary Figs. 2 and 3).

Because light and electron beams in our apparatus are not
collinear, the interaction strength described by β for p-polarized
light vanishes only when the tilt angles are set to ϑ= 0° and α=
αC= 12.9°, in agreement with calculations based on the theory
reported on Methods. This corresponds to the condition that the
incident and reflected amplitudes almost completely cancel each
other in Eq. (3), hence producing a negligible net effect
(minimum βj j, see red curve in Supplementary Fig. 4). This
result is also in agreement with the relation αC =

tan�1 sinδ=ðcosδ � v=cÞ½ � derived in the Supplementary Note 3
from Eq. (3) to yield β= 0 assuming a perfect mirror (blue curve
in Supplementary Fig. 4). Likewise, β cancels when the
polarization is changed from p to s, a result that is clearly
observed in polarization-dependent measurements (see Supple-
mentary Fig. 5).

To extract quantitative information on the measurements
presented in Fig. 2a–c, we perform the corresponding simulations
shown in Fig. 2d–f for the energy distribution of a pulsed electron
beam after impinging on an illuminated Ag/Si3N4 bilayer film,
using the same layer thicknesses and geometrical arrangement as
in the experiment. In particular, we consider p-polarized light
incident with α fixed to the critical angle αC. Simulations are
carried out incorporating realistic dielectric data for the involved
materials (see Methods). The ratio of electron-to-light pulse
durations τe/τL ≈ 410 fs/430 fs ≈ 0.95 is the same as estimated in
experiment (see Methods), long enough to ensure large temporal
overlap between the electron and light pulses, thus enhancing the
probability of interaction. The agreement between experiment
and theory is rather satisfactory. Similar conclusions are also
obtained from measurements and simulations for small τL
compared with τe (see Supplementary Figs. 3 and 6).

We remark that, in contrast to previous studies of
electron–photon interactions14, the effect here observed is
primarily due to electrons coupling directly to the light waves
rather than to the near-field created around a nanostructure. The
kinematic mismatch in the electron–light coupling is remedied by
the formation of semi-infinite light plane-waves (see Supplemen-
tary Fig. 1). As noted above, at a photon energy of ≈1.57 eV the
silver skin depth (≈11 nm) is much smaller than both the optical
wavelength and the metal layer thickness, so the evanescent tail
inside the Ag film gives a negligible contribution, as confirmed
by direct comparison with perfect-mirror simulations based on
Eq. (3) (see Supplementary Fig. 3).

Quantized energy-momentum exchange in electron–photon
coupling. Energy exchanges between light and electrons should
be also accompanied by momentum transfers along the direction
parallel to the film, where translational invariance guarantees
momentum conservation. Measuring such momentum exchanges
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is quite challenging because of the small induced electron
deflection (only a few μrad), which demands high transverse
coherence that we achieve by operating the microscope in high-
dispersion diffraction mode. In Fig. 3a, we show the direct elec-
tron beam measured in the kx− ky diffraction plane when no
light is applied, whereas Fig. 3b and c shows the effect of light
interaction for tilt angles ϑ= 0° and ϑ= 35°, with fixed α= αC. A
clear streaking of the electron beam appears along the kx direction
for ϑ= 35° as a result of the noted momentum exchange. As
already observed in the electron energy spectra, the interaction
vanishes at ϑ= 0 and α= αC for p-polarization, resulting in zero
transverse-momentum exchange. The physical origin of this
behavior is well described by the analytical expressions in Eqs. (2)
and (3), in which the electric field component along the z axis
modulates the interaction strength. This can be also experimen-
tally probed by rotating the polarization of the light wave, which
results in a corresponding modulation of the electron-beam
streaking (see Fig. 3d). In our experiment, because the transverse
coherence of the electrons is comparable with the light wave-
length, a coherent quantized interaction between the electron
wave function and the light wave is expected, rather than a purely
classical deflection as mediated by the Lorentz force32,33, which is
generally negligible under excitation at optical photon frequencies
and above.

This can be demonstrated by the simultaneous visualization of
inelastic energy and transverse-momentum exchanges, which we
directly map using the reciprocal-space imaging ability of the
electron spectrometer in our microscope17,29 (see Fig. 3e–g). The
streaking of the electron beam occurs along a line in energy-
momentum space with slope given by qT,x/ℏω, where qT,x is the
transverse component of the transferred momentum along x,
which in the limit of small angles δ and α admits the expression
qT,x ≈ (ω/c)cosϑ sinϑ (see Supplementary Note 6 for the full
derivation). For every photon absorption/emission event, the
electron gains/loses a quantum of energy ℏω and momentum
ℏqT,x along x.

Such experiment yields a direct observation of the simulta-
neous quantized exchange of energy and transverse momentum
between a propagating light wave and a free-electron, and shows
the unique ability of our technique to map transient energy
exchanges in momentum space. It could prompt the development
of new microscopy methods in which the limitation imposed by
EELS energy resolution is lifted for large momentum transfers,
such as in the dynamic imaging of low-energy phonons.
Furthermore, it demonstrates the ability of external electromag-
netic fields to modulate the linear momentum, and potentially the
angular momentum, of a free-electron in a dynamic way.

Attosecond coherent control of an electron wave function.
These results provide a full characterization of electron–photon
interaction at the mirror interface in energy-momentum space,
which suggests using such interaction for the coherent manip-
ulation of the electron wave function. We implement this idea by
engineering the parameter βj j (which can be thought of as a light-
driven Rabi phase for transitions in the electron multilevel
quantum ladder with ℏω energy spacings19) through a three-
pulse experiment in which the electron interacts with a properly
shaped field distribution consisting of a sequence of two mutually
phase-locked photon pulses, delayed by time intervals Δ1 and Δ2

with respect to the electron pulse (see schematics in Fig. 1c and
additional details in Methods). We change the relative phase
between the two light pulses by varying Δ2− Δ1 in steps of 500
attoseconds. The field distribution resulting from such a temporal
combination of pulses is then used to coherently manipulate the
energy-momentum distributions of the electrons.

A sequence of EELS spectra measured as a function of Δ2− Δ1

is shown in Fig. 4a for ϑ= 35°, α= αC, τe ≈ 350 fs electron pulses,
τL ≈ 60 fs optical pulses, a light field amplitude of 21.4 × 107 V/m
per pulse, and delays Δ1= 0 fs and Δ2 ≈ 100–115 fs. The large
values of Δ2 enable fine modulation of the optical phase while
considerably reducing the intensity changes associated with light-
pulse overlap. We observe periodic oscillations of the spectral
sidebands with a period ≈2.6 fs equal to the optical cycle 2π/ω.
Detailed inspection of the EELS spectra for two different delays
(Δ2= 109 fs and 110.5 fs in Fig. 4b, corresponding to the
horizontal dashed lines in Fig. 4a) reveals radically different
distributions of the sidebands relative to the ZLP, which are
further quantified in Fig. 4c by plotting the ‘ ¼ 9 and ‘ ¼ 14
features as a function of Δ2− Δ1. We observe significant intensity
oscillations with a period of ≈2.6 fs and a well-defined ~ π relative
phase shift. We remark once more that measurements shown in
Fig. 4a–c are well reproduced by our analytical simulations for
two light pulses (see Methods) plotted in Fig. 4d–f, respectively.
As described in detail in Supplementary Note 7, where we have
included several control experiments, additional calculations, and
further considerations on the intrinsic temporal coherence of the
single-electron wave function, we demonstrate that this effect
cannot be assimilated to a simple intensity variation of the
impinging light, which stays at the ~±5 × 10−2 level, and neither
to an incoherent interaction between the electrons and the two
temporally delayed pulses. In fact, in the latter case the
modulation of the energy spectrum, and especially of the high-
energy sidebands, would be only determined by the 5%-optical
interference and would be quantitatively in a similar range, in
contrast with the experimental observations.

The measured oscillatory behavior is indicative of a continuous
redistribution within the quantum electron-population ladder,
periodically transferred back and forth between high- and low-
energy levels. Such an effect is the result of coherent modulation
of the electron wave function via the coherent constructive and
destructive modulation of βj j when changing the relative phase
between the two driving optical pulses. The time-Fourier
transform of the maps in Fig. 4a and d, presented in Fig. 5a
and c, gives access to the spectral distribution within the quantum
ladder at the modulation frequency 2π/(2.6 fs) ≈ 385 THz. The
amplitude and phase of such a modulation, shown in Fig. 5b
and d, provide a complete picture of the optically manipulated
electron wave function resolved for each electron energy level.

The coherent control of ultrafast electron beams has recently
attracted much attention for its potential application in ultrashort
(attosecond) electron sources, as well as electron imaging and
spectroscopy. While semi-infinite light beams have been used for
the temporal streaking and compression of electron pulses21,32–34,
here we demonstrate the simultaneous quantized exchange of
energy and transverse momentum between electrons and
light, which is the dominant mechanism at optical frequencies
and above, and we provide a direct measurement of the strength of
this quantum coherent interaction for controlling the electron
energy-momentum distribution. In our experiments, we synthe-
size a semi-infinite temporally modulated field distribution
(obtained by a sequence of two mutually phase-locked light
pulses impinging on a mirror) to demonstrate coherent modula-
tion of the electron wave function. A schematic representation
of such modulation is shown in Fig. 5e, where snapshots of
the strong electron density redistribution in both energy and
momentum, as observed experimentally and calculated theoreti-
cally, are presented for different values of the optical phase shift of
the synthesized optical field distribution. This approach allows us
to develop additional capabilities of coherent control of free-
electrons beyond similar configurations adopted so far, where the
electron wave function modulation is determined by the light
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interaction at different spatial positions along the electron
pathway20,21,32–34. In our scheme, the adoption of two temporally
separated semi-infinite light fields on one flat and homogeneous
thin layer allows us to employ a simpler experimental geometry
and shift the two interactions temporally instead of spatially, thus
taking full advantage of the intrinsic longitudinal coherence of the
single-electron wave function.

Attosecond-nanometer control of plasmonic near-fields.
Overall, this experiment–theory framework is general and allows
describing other interesting scenarios, such as the phase-
controlled combination of the interaction arising from both
semi-infinite light fields and plasmon polaritons propagating on a
metal film. This is illustrated by measurements presented in
Supplementary Fig. 11, with SPPs optically generated at the edge
of a linear nanocavity carved in the Ag layer. The interference
between the traveling plasmon wave and the semi-infinite light
field creates a standing wave distribution sampled by the

electrons, which allows us to produce a snapshot of the propa-
gating SPP in real-space. By using the two-pulse scheme descri-
bed above, coherent control of these plasmonic near-fields can be
achieved at attosecond-nanometer scale. This is demonstrated by
using a nano-fabricated plasmonic Fabry–Perot (FP) resonator
(see Supplementary Fig. 12a), while simultaneously adopting an
experimental geometry that cancels the interaction with the semi-
infinite field (α= αC and ϑ= 0°), allowing the resonant plasmon
modes of the FP to be solely imaged (see Fig. 6a). Varying the
delay between the two optical pulses in steps of 334 as (see
scheme in Supplementary Fig. 12b) allows us to control the
relative phase between the optically excited plasmons, resulting in
a time-dependent sequence of constructive and destructive
interference between them (see Fig. 6b, c). The plasmonic
coherent control experiments presented here, which would have
been unfeasible in other schemes involving spatially separated
interactions, offer the unique opportunity to perform time-
domain spectro-microscopy of plasmon resonances, where the
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energy resolution is obtained via Fourier transform of the tem-
poral traces (see Fig. 6d) and is not limited by the overall electron
energy-loss resolution (sub-eV at best, see Supplementary
Fig. 10). In a complementary frequency-domain approach35, the
spectral response of the resonance was obtained by using a single
optical pulse with a tunable wavelength and a resolution deter-
mined by the 20 meV laser linewidth.

Zeptosecond coherent control of an electron wave function. As
described above, when the electron scattering cannot be assisted
by the plasmonic near-fields, a refracting, absorbing, or reflecting
interface can be used for mediating the electron–light interaction.
A particularly appealing consequence of such condition consists
in the possibility of controlling the electron wave function using
photons of different energies, not restricted by the ability of
materials to support localized plasmon resonances, but solely
determined by the quality of the mirror surface at a specific
frequency. Using high-energy photons all the way to the X-ray
regime, our methodology would then allow us to control the
electron wave function down to the zeptosecond timescale36. To
verify the feasibility of this idea, we have designed a multilayer
mirror composed of 30 layers of 1.6-nm-thick cobalt spaced by 1-
nm-thick gold (total thickness is 78 nm), still transparent for 200
KeV electrons and capable of reflecting around 35% of 777 eV
light at an angle of incidence of 45° (see Supplementary Fig. 13).
This type of mirror is routinely used in X-ray facilities37, and
combined with commonly employed TEM sample preparation
techniques, such as ion-milling and FIB machining, it can be

fabricated in form of electron transparent lamellas. We then
simulated a three-pulse experiment with two 100 fs, 777 eV, 50
TW/cm2 X-ray pulses, similar to what is currently available from
free-electron lasers38, impinging on the multilayer along the same
direction as a 300 fs electron pulse (see schematics in Fig. 7a). We
carry out simulations within a 30-attosecond window starting
from an initial delay Δ2− Δ1= 150 fs. Electron sidebands are
clearly discernable at energies of ±777 eV relative to the ZLP (see
Fig. 7c), originating in the same electron–ladder interaction as
observed for near-infrared light. From our calculation, we infer
that the sideband ‘ ¼ 1 has a relative intensity with respect to the
ZLP of about 10−5. For a repetition rate of 300 kHz, such as used
in the LCLS-II FEL at SLAC, this translates to about 3 electrons/s
in a single channel of the detector, whose measurement can be
done using commercially available highly sensitive direct detector
cameras. The resulting EELS spectrum as a function of the delay
between the two X-ray pulses is displayed in Fig. 7b, and the
relative intensity change for the first sideband is shown in Fig. 7d,
revealing a clear modulation by the optical cycle of the X-ray
pulse (≈5.3 as) and an intensity change rate of ≈1% per 511 zs. It
is worth noting that in our scheme phase fluctuations of the X-ray
beam, whose main effect is the generation of a temporal jitter of
few femtoseconds39 between consecutive pulses, do not represent
an issue. This is because our experiment uses two photon pulses
originating from the same photon pulse by means of an inter-
ferometer, and thus, the two X-ray pulses will be intrinsically
phase-locked with an inherently zero jitter between them.
Coherent manipulation of the electron wave function can be thus
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pushed to the zeptosecond regime using currently existing tech-
nology within our electron–light interaction scheme. Access to
such timescales may open interesting perspectives for the obser-
vation of intramolecular electronic motions40 and nuclear pro-
cesses such as fission, quasifission, and fusion41.

External control of nuclear excitations. Very recently, nuclear
excitation by electron capture (NEEC) has been experimentally
demonstrated42. In such a process, an electron is captured by an
ionized atom while simultaneously inducing the excitation of the
nucleus. In this experimental design, ions were produced by
stripping electrons away from an atomic beam going through a
thin foil. The electronic levels of the ionized atoms were redis-
tributed with respect to the equilibrium atoms, so that electrons
interacting with them randomly sampled one of these
configurations.

On a different approach, multiple atomic ionization can also be
produced by interaction with ultrashort intense laser pulses. In
ref. 43, a surprising resonant effect is reported when tuning the
energy of the ionizing X-ray laser pulse. During this process,
atomic levels transit several intermediate configurations whose
lifetimes lie in the range between few zeptoseconds and few
attoseconds.

In this scenario, we propose that by synchronizing the carrier
of a properly tuned X-ray pulse with ultrashort electron pulses at
the attosecond or zeptosecond level, the nuclear excitation can be
controlled coherently with an ad hoc removal/insertion of
electrons from and into the atom. A scheme of this concept is
displayed in Fig. 7e. A train of zs electron pulses is synchronized
to the optical cycle of an X-ray pulse. By varying their relative
delay time Δτ, different out-of-equilibrium configurations of the
ionized atoms may be sampled in a push/pull-like approach.
Given the degrees of freedom that such an experiment can
provide in choosing both the electron and X-ray energies, their
relative timing, light polarization and intensity, we expect that
interesting resonance effects can be discovered in the excitation of
the nuclei.

Controlling nuclear phenomena via external parameters is an
extremely interesting perspective. Ideally, one would like to
induce instabilities in an otherwise stable or metastable nucleus to
prompt energy-producing decays, or to generate radiation.
However, accessing nuclei is difficult and energetically costly
because of the protective shell of electrons surrounding it. Thus,
external parameters such as pressure, magnetic field or chemical
environment have little or no effect on decay rates and nuclear
properties in general. Our scheme would offer a further
perspective for the control of nuclear reactions with potential
implications in various fields, from fundamental physics to
energy-related applications.

Methods
Materials and experiment. A sketch of our experiment is depicted in Fig. 1a. We
used an ultrafast transmission electron microscope (a detailed description can be
found in ref. 29) to focus femtosecond electrons and light pulsed beams on an
optically thick mirror. The mirror was thin enough to transmit the electrons while
producing large light reflection. Specifically, it was made of a 43 nm-thick (±5 nm)
silver thin film sputtered on a 30 nm Si3N4 membrane placed on a Si support with a
80 × 80 μm2 window, which was in turn mounted on a double-tilt sample holder
that ensured rotation around the x (angle α) and y (angle ϑ) axes over a ±35° range.
Electron pulses were generated by photoemission from a UV-irradiated LaB6
cathode, accelerated to an energy E0= 200 keV along the z axis, and focused on the
specimen surface. The mirror was simultaneously illuminated with femtosecond
laser pulses of ℏω= 1.57 eV central energy and variable duration, intensity, and
polarization. The light pulses were focused on the sample surface (spot size of
~58 μm FWHM). The light propagation direction lied within the y–z plane and
formed an angle δ ~ 4–5° with the z axis, as shown in Fig. 1a. The delay between
electrons and photons was varied via a computer-controlled delay line. For the
three-pulse experiment, we implemented a Michelson interferometer along the

optical path of the infrared beam, incorporating a computer-controlled variable
delay stage on one arm.

The transmission electron microscope was equipped with EELS capabilities,
coupled to real-space and reciprocal-space imaging. Energy-resolved spectra were
acquired using a Gatan imaging filter (GIF) camera operated with a 0.05 eV-per-
channel dispersion setting and typical exposure times of the CCD sensor from 30 to
60 s. Multiple photon absorption and emission events experienced by the electrons
were analyzed as a function of relative beam-mirror orientations by recording EELS
spectra and diffraction patterns in high-dispersion-diffraction mode. During post-
acquisition analysis, the EELS spectra were aligned based on their ZLP positions
using a differential-based maximum intensity alignment algorithm.

Special care was taken in modulating and evaluating the temporal width of the
light and electron pulses. We varied the duration of the optical pulses by modifying
the temporal chirp of the laser amplifier output using a pair of tunable glass prisms.
An infrared auto-correlator was used for measuring the duration of the infrared
pulses. For electrons, the pulse duration was estimated by measuring the
electron–photon cross-correlation as obtained by monitoring the EELS spectra as a
function of the delay time between electrons and the infrared light. In the low-
excitation regime, the measured temporal width of the ‘th sideband is roughly

τ‘ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2e þ τ2Lð Þ=‘� �q

(that is, the convolution of electron and optical pulses44 of

durations τe and τL, respectively). For infrared pulses with τL= 60, 175, and 430 fs
FWHM, we derived electron pulse durations τe= 350, 395, and 410 fs FWHM,
respectively (<5% estimated error).

Theory of ultrafast electron–light interaction. Following previous works15,16,18,
we describe an electron wavepacket exposed to an optical field through the Schrö-
dinger equation (H0+H1)ψ= iℏ∂ψ/∂t, where ψ(r, t) is the electron wave function,
H0 is the free-space Hamiltonian, and H1= (−ieℏ/mec)A(r, t) ·∇ represents the
minimal-coupling interaction involving the optical vector potential A(r, t) in a gauge
in which the scalar potential and ∇ ·A are both zero. We consider an expansion of
the electron wave function in terms of components ei k�r�Ek t=�hð Þ of momentum
ℏk piled near a central value ℏk0 with k0= �h�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meE0ð Þ 1þ E0=2mec2ð Þp

, corre-
sponding to an electron kinetic energy E0. Each of these components is an
eigenstate of H0 with energy Ek ≈ E0+ ℏv · (k− k0), where v= (ℏk0/me)/(1+ E0/
mec2) is the central electron velocity. This approximation is valid for small
momentum spread (that is, k � k0j j � k0). Under these conditions, we can also
approximate H0 ≈ E0− ℏv · (i∇+ k0), as well as ∇ ≈ ik0 in H1. Now, it is con-
venient to separate the fast evolution of the wave function imposed by the central-
momentum component as ψ(r, t)= ei k0 �r�E0 t=�hð Þϕðr; tÞ, where ϕ(r, t) then displays a
slower dynamics. Putting these elements together, the Schrödinger equation
reduces to

ðv � ∇þ ∂=∂tÞϕ ¼ �iev
�hc

� Aϕ;

which admits the rigorous solution

ϕðr; tÞ ¼ ϕ0ðr� vtÞexp �iev
�hc

�
Z t

�1
dt′Aðrþ vt′� vt; t′Þ

� �
: ð4Þ

Here, ϕ0(r− vt) is the electron wave function before interaction with the optical
field. In practice, we consider illumination by an optical pulse with a narrow
spectral distribution centered around a frequency ω, so the vector potential can be
approximated as Aðr; tÞ � ð�ic=ωÞ~E0ðr; tÞe�iωt þ c:c:, where the electric field
amplitude ~E0ðr; tÞ describes a slowly varying pulse envelope that changes negligibly
over an optical period. Inserting this expression into Eq. (4), we find the solution
ϕ(r, t)= ϕ0ðr� vtÞe�BþB�

, where Bðr; tÞ= ev
�hω �
R t
�1 dt′ ~E0ðrþ vt′� vt; t′Þe�iωt′ .

Finally, using the Jacobi-Anger expansion eiu sinφ ¼P1
‘¼�1 J‘ðuÞei‘φ (see Eq.

(9.1.41) of ref. 45) with uj j ¼ 2 Bj j and φ ¼ argf�Bg, we obtain ϕ(r, t)=
ϕ0ðr� vtÞP1

‘¼�1 J‘ 2 Bj jð Þei‘ argf�Bg . This expression has general applicability
under the assumptions of small energy spread in both electron and optical pulses.

For monochromatic light (that is, when ~E0ðrÞ depends only on position),
considering without loss of generality v along bz, we find B ¼ βðrÞe�iωðz=v�tÞ with

βðrÞ ¼ e
�hω

Z z

�1
dz′E0zðx; y; z′Þe�iωz′=v; ð5Þ

and the electron wave function then becomes

ϕðr; tÞ ¼ ϕ0ðr� vtÞ
X1
‘¼�1

J‘ 2 βj jð Þei‘ argf�βgþi‘ωðz=v�tÞ; ð6Þ

where the last term in the exponential shows a change in the energy and
momentum of the ‘ wave function component given by ‘�hω and ‘�hω=v.

For a Gaussian light pulse ~E0ðr; tÞ ¼ ~E0ðrÞe�t2=σ2L , corresponding to a FWHM-
intensity duration τL=

ffiffiffiffiffiffiffiffiffiffiffiffi
2log2

p� �
σL � 1:18σL, under the assumption that the time

needed by the electron to cross the interaction region is small compared with σL, we

recover the result of Eq. (6) with β (Eq. (5)) replaced by e�ðz=v�tÞ2=σ2Lβ.
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We now calculate the electron probability at the detector as the integralR
d3r ϕðr; tÞj j2 for a large time t. Assuming a Gaussian electron pulse ϕ0(r− vt)∝

e� t�z=v�Δ1ð Þ2=σ2e normalized to one electron
R
d3r ϕ0
		 		2¼ 1

� �
, with FWHM-

intensity duration τe=
ffiffiffiffiffiffiffiffiffiffiffiffi
2log2

p� �
σe, and a delay Δ1 relative to the light pulse, we

find the probability that the electron has exchanged a net number of photons ‘ to
be

P‘ ¼
ffiffiffi
2
π

r
1
σe

Z
dt e�2t2=σ2e J2‘ 2 βj je� tþΔ1ð Þ2=σ2L

� �
; ð7Þ

with β evaluated in the z →∞ limit of Eq. (5). From the identity45
P

‘ J
2
‘ ðuÞ ¼ 1, we

reassuringly obtain
P

‘ P‘ ¼ 1. In the derivation of this expression, we have
assumed that different ‘ electron channels have well separated energies, a condition
that is guaranteed by the assumption of small energy spread in both pulses (that is,
E0σe � �h and ωσL � 1). Finally, using the Taylor expansion J‘ðuÞ=P1

j¼0ð�1Þjðu=2Þ‘þ2j=j!ð‘þ jÞ! for the Bessel functions45, the time integral in
Eq. (7) can be readily performed term by term to yield

P‘ ¼
X1
j¼0

X1
j′¼0

C‘jC‘j′
1ffiffiffi
λ

p e�2n Δ2
1=σ

2
Lð Þ=λ; ð8Þ

where n ¼ ‘þ jþ j′, λ= 1+ n(σe/σL)2, and C‘j = ð�1Þj βj j‘þ2j=j!ð‘þ jÞ! In the
monochromatic limit σL � σe, we trivially obtain P‘ ¼ J2‘ 2 βj jð Þ (that is, Eq. (2)).

Under illumination with two identical light pulses delayed by Δi (i= 1, 2)
relative to the electron and with their amplitudes scaled by real factors Ai, a similar
analysis can be carried out, starting by expressing β as the sum of two contributions
(one per light pulse). Under the assumptions stated above, we obtain for the
probability an expression similar to Eq. (7),

P‘ ¼
ffiffiffi
2
π

r
1
σe

Z
dt e�2t2=σ2e J2‘ 2 β

X
i¼1;2

Aie
�iωΔi e�ðtþΔiÞ2=σ2L

					
					

 !
: ð9Þ

We then replace the Bessel function by its Taylor expansion and use the Newton
binomial expansion to work out the powers of the i sum. Each term in the resulting
expression has a time dependence fully contained in a single exponential with an
argument having terms in t and t2, which we integrate analytically. After some
tedious but straightforward algebra, we find the result

P‘ ¼
P1
j¼0

P1
j′¼0

Pn
s¼0

Pn
s′¼0

C‘jC‘j′
n

s


 �
n

s′


 �
A2n�s�s′
1 Asþs′

2 cos ðs� s′ÞωðΔ2 � Δ1Þ½ �

´ 1ffiffi
λ

p e�2n Δ2
12=σ

2
Lð Þ=λ e�½1�ðs�s′Þ=2n�ðs�s′Þ Δ2�Δ1ð Þ2=σ2L ;

ð10Þ

where Δ12= [(2n− s− s′)Δ1+ (s+ s′)Δ2]/2n. While Eq. (10) is convenient for the
calculation of probabilities, Eq. (9) delivers a clearer physical picture: the argument
of the Bessel function incorporates the coherent superposition of the two pulses, in
which the shared spatial dependence affects β (Eq. (5)), while the temporal
dependence stemming from B is captured by the i sum. In particular, a trivial
constructive (destructive) interference takes place in the limit of long pulses if A1=
A2 and Δ1− Δ2 is a multiple (half-multiple) of the optical period. For finite electron
pulses, this interference is more involved, as it is intermingled with different
components of the electron wave function along the time integral (such as captured
by the factor e�2n Δ2

12=σ
2
Lð Þ=λ in Eq. (10)).

The above theory includes the temporal span of the electron function through
the Gaussian FHWM parameter σe. Incidentally, we have also generalized this
result to include an incoherent temporal broadening of the electrons through a
Gaussian temporal distribution of the electron wavepacket center with a FWHM σe,
inc; this analysis rigorously leads to the same expressions as above, but with σe

substituted by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2e þ σ2e;inc

q
, thus indicating that within the assumptions of the

present model the PINEM spectra depend on coherent (wave function temporal
span) and incoherent (different times of arrival) electron broadening through a
single parameter that coincides with the convolution of two Gaussians of durations
σe and σe,inc.

In our numerical simulations, we use Eqs. (8) and (10) with the electric field
obtained by a standard transfer-matrix approach for a bilayer formed by Ag and
Si3N4, with the permittivities of these materials taken as46 −30.3+ 0.39i and47 4.04,
respectively. Calculations for X-ray pulses at 777 eV photon energy are performed
for multilayers of Au and Co, described by their permittivities 0.97+ 0.014i and
1.01+ 0.0014i, respectively. Light amplitudes in the simulations are reduced by a
factor of 1.7 with respect to the experimental estimates. This factor, which provides
the best theory-experiment fit, is presumably originating in unaccounted losses
along the optical path of the laser beam, especially when the light enters within the
electron microscope before reaching the sample. This might possibly be due to
contamination of the metallic mirror inside our TEM or to partial clipping of the
light beam by the inner structure of the magnetic lens. Also, because the estimate of
the beam diameter at the sample is carried out through indirect methods, it can
easily be underestimated. If we assume a 30% underestimation of the diameter, we
get a factor 1.5 in the electric field amplitude, not far from 1.7.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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