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Non-diffracting multi-electron vortex beams
balancing their electron–electron interactions
Maor Mutzafi1, Ido Kaminer1,2, Gal Harari1 & Mordechai Segev1

The wave-like nature of electrons has been known for almost a century, but only in recent

years has the ability to shape the wavefunction of EBeams (Electron-Beams) become

experimentally accessible. Various EBeam wavefunctions have been demonstrated, such as

vortex, self-accelerating, Bessel EBeams etc. However, none has attempted to manipulate

multi-electron beams, because the repulsion between electrons rapidly alters the beam

shape. Here, we show how interference effects of the quantum wavefunction describing

multiple electrons can be used to exactly balance both the repulsion and diffraction-

broadening. We propose non-diffracting wavepackets of multiple electrons, which can also

carry orbital angular momentum. Such wavefunction shaping facilitates the use of multi-

electron beams in electron microscopy with higher current without compromising on spatial

resolution. Simulating the quantum evolution in three-dimensions and time, we show that

imprinting such wavefunctions on electron pulses leads to shape-preserving multi-electrons

ultrashort pulses. Our scheme applies to any beams of charged particles, such as protons and

ion beams.
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The wave-like nature of electrons is now a well-established
concept for many years, with famous experimental
demonstrations such as the double slit experiment1 and

Snell’s like refraction2. The wavelength of an electron with
accessible energy is several orders of magnitude shorter than
optical wavelengths, thereby providing access to microscopy
experiments at atomic resolution3. Naturally, electron beam
sources find numerous applications beyond microscopy,
including radiation sources such as free electron lasers4, 5,
electron beam lithography etc. Yet only in the past several years,
the actual shaping of the wavefunction of electrons has become
experimentally possible6. Indeed, shaping and manipulating the
wavefunction of an electron is currently achieved through new
techniques that use binary masks7 (made from a thin metal foil
fabricated at nanoscale resolution) or amplitude and phase
masks8 (made of thin silicon-nitride (SiN) membranes)
imprinting the actual amplitude and phase distribution of
the wavefunction. With these techniques, shaping the
quantum wavefunction of electron beams (EBeams) has been
used to generate EBeams carrying orbital angular momentum
(OAM)6, 7, 9, 10 self-accelerating (Airy) EBeams11 and more
recently—Bessel EBeams12. The ability to create vortex EBeams
(EBeams that carry OAM) has opened a whole field of research
and many studies has investigated and showed the properties and
the features of vortex EBeams6–10, 12–17. Such techniques may
also fundamentally change all EBeam applications and
experiments, since they allow direct control over the quantum
wavefunction of electrons13.

One of the most important applications of EBeams is electron
microscopy, which has become an essential tool in many fields of
science and technology, such as biology, materials science,
electrical engineering and more. Scanning electron microscopy18

(SEM), transmission electron microscopy19 (TEM) and scanning
transmission electron microscopy (STEM) produce images by
scanning a sample with a focused EBeam or transmitting an
EBeam through the sample. The EBeam interacts with the sample
and produces an image containing information that is often at
atomic resolution.

Importantly, the fundamental limit on the highest resolution
possible in electron microscopy is the wavelength of the particle,
which for electrons is on the order of picometers (10−12 m). In
practice, however, state-of-the-art electron microscopes are still
2–3 orders of magnitude away from this fundamental limit, in spite
of the recent advances in correcting aberrations. There are several
reasons limiting the resolution of electron microscopes20, 21,
among them the interaction between electrons22, 23, which is called
the space-charge effect. This effect is currently the dominant
resolution barrier in time-resolved electron microscopy22–26.
Moreover, with the recent technological improvements in elec-
tron microscopy, the space charge effect is likely to remain the
last fundamental issue constraining the resolution limit. Of
course, when the density of the electrons in the beam is low
enough, this effect becomes negligible. However, working with
one electron at a time23 implies longer integration times in the
detection process to obtain a reasonable signal-to-noise ratio
(SNR). This space charge effect is of even greater importance in
low-voltage electron microscopes, which are now becoming more
popular. There, electron–electron interaction is already prevent-
ing an even lower acceleration voltages27. Moreover, in the past
few years, novel experiments employ ultrashort pulses of
electrons in microscopy, triggered by ultrashort pulses of light.
These ultrashort pulses of electrons correspond to high electron
density, which fundamentally limits the resolution due to space
charge field effects24, 25, 28.

In principle, shaping the quantum wavefunction of electrons
has the potential to improve the performance of traditional

electron microscopes. However, thus far most electron
microscopes have been using only low electron currents, working
with one electron at a time, where the space-charge effect is
negligible. The intrinsic reason for that is that electron–electron
interactions cause repulsion between the electrons, which
broadens the EBeam, and fundamentally hampers the resolution.
For this reason, most electron microscopes rely on relatively low
currents, which can be fully described by single electrons.

Here, we develop a quantum wave shaping technique to
compensate for the repulsion between electrons and generate a
tightly focused high-density EBeam, which maintains its shape
and width for large distances. We propose to do that by proper
shaping of the quantum wavefunction of multiple electrons, so as
to counteract both the repulsion and the diffraction-broadening.
To find such a non-diffracting multi-electron beam, we formulate
the multiple-electron Schrödinger equation, which is nonlinear
due to the interaction among electrons. Then, we solve for the
wavefunction that preserves its shape in time. Finally, we
demonstrate, in a three-dimensional (3D)+time simulation, that
our specifically designed multi-electron beam is non-diffracting
also under ultrashort pulse operation, and is robust to the broad
spectrum of a 200 fs pulse. Our technique facilitates the use of
EBeams made up of multiple electrons without compromising on
the spatial resolution. It enables higher SNR with short integra-
tion time, by working with high-density EBeams while exhibiting
spatial resolution equal to the resolution of a single-electron. As
such, it can contribute to all electron beams applications and
experiments, such as electron microscopy, free electron lasers,
electron beam lithography, accelerators etc. In addition, future
studies can lead to fabrication of masks for heavier charged
particles, such as beams of ions, protons and even muons.
Our scheme still applies in such cases and gives significantly
better results because heavier charged particles have much
lower velocity for the same acceleration field. Moreover, it
should be possible to apply our scheme to other problems
causing resolution degradation of electron beams, for example,
the high charge density at the source (the tip), as we suggest
below.

Results
Derivation of the equations of motion. The multiple-electron
Schrödinger equation contains terms of interaction between
electrons. Those terms change the Schrödinger equation to
become a nonlinearly coupled set of wave equations. The full
many-body problem is complex because the number of degrees of
freedom is proportional to the number of electrons, which is
computationally intractable (for a large number of electrons) with
classical computers. Thus, we apply a mean-field approach
(the Hartree approximation) to reduce the problem to a smaller
number of nonlinearly coupled wave equations, which can still
describe a large number of electrons. Mean-field approximations
are commonly used for free-electrons, such as plasma29, 30,
EBbeams31–33 and many other fermionic systems34. It is
important however to note that stochastic effects, which are
beyond the mean-field theory, have proven rather relevant for the
space-charge broadening of ultrashort electron pulses in certain
circumstances31, 33. From these coupled equations, we find the
nonlinear non-diffracting EBeam wavefunctions that can also
carry OAM. In other words, we find multi-electron vortex beams
that preserve their shape. Generally, these solutions are not
square-integrable, similar to the Bessel and Airy beams11, 12.
Hence, generating them in a physical setting implies truncating
their wavefunctions, which makes the beam non-diffracting only
for a finite distance. Simulating the evolution (propagation
dynamics in space and time) of these beams shows that the range
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within which our non-diffracting multi-electron beams remain
with negligible diffraction broadening can be very large, and
proves their robustness to noise and to deviations
from non-ideal launch conditions. Finally, we compare the
non-diffraction range of our non-diffracting wavefunctions with
that of a Gaussian EBeam (which is roughly the wavefunction
that naturally occurs in electron microscopes) and with a
Bessel EBeam (the non-diffracting analogue for a single electron).
In all these simulations, we observe substantially larger non-
diffraction range of our multi-electron wavefunctions. This
paves the way for using properly shaped multi-electron beams
in electron microscopy as well as in a variety of other
applications.

Thus far, wavefunction shaping of EBeams7, 8, 10–12 have only
considered EBeams comprising of a single electron. As such, these
methodologies are inapplicable for high-density electrons beams,
where electronic repulsion is appreciable. At the same time, high-
density EBeams are encountered in a variety of applications,
ranging from accelerators, high-current and low-voltage electron
microscopy (LEEM) to high-intensity X-ray sources (e.g., Free
Electron Laser) and much more. Naturally, controlling and
shaping high-density EBeams is also important from the basic
science view point.

The repulsion between electrons renders the beam diffraction
to be density-dependent, thereby making the problem nonlinear.
That is, while a sufficiently dilute EBeam is described by the linear
Schrödinger equation, the physics becomes considerably more
complex when many-body interactions take place. This draws a
fundamental difference between electron beams and electromag-
netic beams: at intensities lower than 1022Watts cm−2, where
vacuum quantum electrodynamics effects are negligible35,
photons do not directly interact with one another, whereas
electrons inevitably always interact with one another.

Importantly, in addition to Coulomb repulsion, EBeams are
also subject to spin–spin interaction, and in case of beams
carrying OAM, also to spin–orbit interaction, thereby adding
additional complexity to the dynamics14. However, under the
typical parameters of electron microscopes (primarily that all
features are much larger than the Compton wavelength), the
spin–spin and spin–orbit interactions are negligible compared to
the electrostatic potential energy (see Supplementary Note 3 for
details).

The exact Schrödinger equation contains a nonlinear set of
coupled equations whose number is the number of electrons. To
make the problem tractable, we approximate the full multi-
electrons Hamiltonian by the Hartree Hamiltonian, which is an
effective mean-field Hamiltonian. This approach assumes that the
influence of the fermionic nature of the electrons (the exclusion
principle) is very weak36, 37 (see discussion in the Supplementary
Note 1). Hence, we are allowed to take the simplest case where all
the electrons have the same wavefunction, as happens naturally in
electron microscopes. We also restrict the wavefunction to be
cylindrically symmetric while allowing it to carry OAM. This
wavefunction is therefore of the form

ψ r; tð Þ ¼ 1
a0

ϕ ρð Þeilθ e
ikz�iωt

ffiffiffi
L

p ; ð1Þ

where, a0 is Bohr’s radius, l is the OAM and k is the wavenumber
in the z direction. The normalization factor,

ffiffiffi
L

p
, sets the

characteristic length scale (z) within which the wavefunction is
significant (the so-called uncertainty length). Although this factor
cancels out later on, this length scale is useful for estimating the
strength of the effects involved (see Supplementary Note 3). The
time evolution of the wavefunction ψ, according to the Hartree

Hamiltonian (see discussion in the Supplementary Note 1), is

�i�h∂tψ r; tð Þ ¼ � �h2

2m
∇2ψ r; tð Þ þ Ne2

4πε0

Z
ψ r′; tð Þj j2
r� r′j j d3r′

� �
ψ r; tð Þ;

ð2Þ

where ħ is the reduced Planck constant, m and e are the mass and
charge of the electron respectively, ε0 is the vacuum permeability
and N is the total number of electrons in the EBeam. This
equation is known as Choquard equation38. The second term in
the right hand side of Eq. (2) resembles an effective potential.
Hence, we define

U r; tð Þ ¼ 2Na0

Z
ψ r′; tð Þj j2
r� r′j j d3r′: ð3Þ

Substituting Eq. (3) in Eq. (2), we get the following coupled
equations,

�i�h∂tψ r; tð Þ ¼ �h2

2m
�∇2 þ 1

a20
U r; tð Þ

� �
ψ r; tð Þ; ð4Þ

∇2U r; tð Þ ¼ �8πNa0 ψ r; tð Þj j2: ð5Þ

Substituting the wavefunction from Eq. (1) as a source term in
Eqs (4) and (5), we find that the effective potential also has
rotational symmetry, and as such it depends only on ρ, such that
U(r, t)=U(ρ). We now look for a solution that is non-diffracting,
namely, we seek a wavefunction whose expectation value does not
vary in time. This allows the separation into two coupled
nonlinear differential equations,

� 1
ρ
∂ρ ρ∂ρ
� �� l2

ρ2

� �
ϕ ρð Þ þ 1

a20
U ρð Þϕ ρð Þ ¼ 0; ð6Þ

1
ρ
∂ρ ρ∂ρ
� �

U ρð Þ ¼ � 8πn
a0

ϕ ρð Þj j2; ð7Þ

where, n is the density of electrons per unit distance. These
equations resemble the Newton–Schrödinger model39, 40, which
is often used in General Relativity to describe the dynamics of
wavefunctions under the gravitation potential they themselves
induce. This set of equations also resemble the equations used to
describe the dynamics of optical beams in the presence of the
highly nonlocal optical thermal nonlinearity, which supports
solitons41 and their long-range interactions42. Such an optical
system was recently used to emulate effects predicted in General
Relativity, and discover new phenomena43. Interestingly, this
system also resembles the model describing long-range
interactions between cold atomic dipoles44, which also give rise
to solitons and related phenomena. These nonlocal solitons41, 42

and their counterparts in cold dipoles44 resemble the non-
diffracting multi-electron wavepackets found here, as solutions to
Eqs (6) and (7). However, whereas in the Newton–Schrödinger
model the force is always attractive, the force here is always
repulsive. This means that, while the nonlinear non-diffracting
wavepackets in the Newton–Schrödinger model are solitons, and
are therefore localized and square-integrable41, we expect the
localized non-diffracting solutions of Eqs (6) and (7) to be not
square-integrable. Intuitively, seeking localized solutions for Eqs
(6) and (7) resembles searching for non-diffracting beams in
self-defocusing thermal optical nonlinearities, which fundamen-
tally cannot support bright solitons but can support dark
solitons45 and also localized non-diffracting wavepackets that
are not square integrable (e.g., nonlinear Bessel-like beams46).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00651-z ARTICLE

NATURE COMMUNICATIONS |8:  650 |DOI: 10.1038/s41467-017-00651-z |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Finding the non-diffracting wavefunction. To solve these
differential equations and find a shape-invariant solution, we
need to determine the initial conditions. The wavefunctions we
seek have rotational symmetry with respect to the propagation
axis (z), hence so does the effective potential, which yields
U′(ρ= 0)= 0. Substituting this condition into Eq. (6) at the
vicinity of ρ= 0 gives the Bessel equation, whose solution is
ϕ(ρ) ~ αJl(kTρ) (the other solution, Yl(kTρ), is unphysical because
it diverges at ρ= 0). Using ϕ(ρ) in Eq. (6) leads to
U ρ ¼ 0ð Þ ¼ �k2T , where kT is a real positive number, which
corresponds to the transverse momentum. Another initial con-
dition is provided by the normalization requirement
2π

R
BSS ϕ ρð Þj j2ρdρ ¼ 1, where the integral boundaries correspond

to the Beam Spot Size (BSS) defined at the plane where the beam
is shaped. For a given BSS we get a continuous set of solutions,
determined by the free parameter kT, which can vary between 0
and infinity.

In summary the initial conditions for Eqs. (6) and (7) are

ϕ 0ð Þ ¼ α

ϕ0 εð Þ ¼ αkTJ ′l kTεð Þ

U 0ð Þ ¼ �k2T

U 0 0ð Þ ¼ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

with, normalization requirement,

2π
Z
BSS

ϕ ρð Þj j2ρdρ ¼ 1: ð9Þ

We solve Eqs (6) and (7) with the initial conditions and the
normalization condition from Eqs (8) and (9), numerically
(see Supplementary Note 1), where α is found iteratively to fulfill
requirement Eq. (9).

Figure 1a shows an example of the radial wavefunction ϕ(ρ) of
a non-diffracting EBeam with zero OAM. It is instructive to
compare this wavefunction (which is a shape-invariant solution
of the nonlinear equation) to the Bessel function, which is a
shape-invariant solution of the linear equation describing the
evolution of a single electron12. Figure 1a shows this comparison,
with the same value of kT. In the vicinity of ρ= 0, the
shape-invariant solution coincides with J0(kTρ), but for large ρ
its lobes are considerably denser than those of the Bessel function.
The reason is as follows. The Bessel beam is designed to
compensate exactly for linear diffraction broadening, whereas our
multi-electron beam displays additional broadening due to the

nonlocal repulsion among electrons. Intuitively, to compensate
for both the diffraction and the electron–electron repulsion,
the lobes of the beam must be denser. That is, denser lobes
carry more transverse momentum, which is required to
compensate for the additional diffraction broadening caused by
the multi-electron repulsion. Accordingly, the effective potential
representing the repulsion between electrons, U ρð Þ ¼ �k2T ρð Þ, is
increasing with ρ, which implies that higher transverse momen-
tum (denser oscillations) is required to compensate for the
repulsion at higher ρ values. An interesting case is shown in
Fig. 1b, which presents the radial function found for kT= 0 (with
ϕ′(0)= 0 and ϕ″(0)= 0), which yields the upper limit to the
width of the main lobe of the radial wavefunction of the shape-
invariant solutions of Eqs (6) and (7). This solution does not have
a corresponding linear solution, because the Bessel function
becomes a constant (corresponding to a plane wave) for kT= 0.
Figure 1c displays several radial wavefunctions of shape-invariant
solutions that carry OAM (with the same value of kT and BSS as
in Fig. 1a). The blue, green, red and cyan curves correspond to
OAM of zero, one, three and five, respectively.

Creating the non-diffracting wavefunction. The non-diffracting
wavefunctions (the solutions of Eqs (6) and (7)) can be generated
by passing the EBeam through a binary holographic mask as in
refs 6, 7, 10–12, or through a phase mask imprinting the actual
phase distribution of the shape-invariant wavefunction8, which
shapes the electron wavepacket directly. The holographic mask
has the following transmission function

Tholographicmask ¼ F ϕ ρð Þeilθ� �þ eikhρ cos θ
		 		2; ð10Þ

where ϕ(ρ)eilθ is the non-diffracting wavefunction (solution of
Eqs (6) and (7)), F is its Fourier transform, and eikhρ cos θ is a plane
wave acting as a reference for the hologram. This transmission
function is designed to have a binary shape, as in refs 6, 7, 10–12

according to

Tbinary
holographicmask ¼

1; Tholography > threshold; and ρ<ρmax

0; else

8><
>:

:

ð11Þ
An example for an experimental scheme for generating the

shape-invariant wavefunction of multi-electron beams is shown
in Fig. 2. It is similar to the way Bessel EBeams12 and Airy
EBeams11 are generated. Figure 2a shows the scheme, where the
non-diffracting wavefunction multi-electron beam is generated by
a holographic mask. An electron beam is transmitted through a
binary mask, then focused by a magnetic lens to the back focal

20 60

�[nm] �[nm] �[nm]

�Nonlinear(�)

�Bessel(�)

20 60 20 60

OAM=0

OAM=1

OAM=3

OAM=5

a b c

Fig. 1 Radial part of the shape-invariant wavefunctions of multi-electron beams. a Radial wavefunction (ϕ(ρ)) of the beam with zero OAM (blue), compared
with the Bessel function which is the corresponding non-diffracting single-electron beam. b The unique over-wide radial wavefunction obtained for kT= 0,
which does not allow OAM, and does not have a corresponding non-diffracting single-electron beam. c Radial wavefunctions of multi-electron beams
carrying OAM= 0, 1, 3, 5 (blue, green, red and cyan, respectively)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00651-z

4 NATURE COMMUNICATIONS |8:  650 |DOI: 10.1038/s41467-017-00651-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


plane, which is where the sample is inserted. Importantly, the
scheme ensures that the high density of electrons is obtained at
the back focal plane, whereas the density at the mask plane is low
(BSS= 10 μm), such that the electron–electron repulsion at the
mask is weak. Thus, the beam experiences linear diffraction
everywhere else in the system before the back focal plane.
Another approach for generating the non-diffracting wavefunc-
tion of multi-electron beams may be to directly shape the tip of
the electron gun (as done in refs 47–51), to the specific shape that
generates our non-diffracting wavefunction. Doing this could also
resolve the space-charge problem at the tip of the electron gun,
which is currently where the space-charge effect is the most
problematic in electron microscopy.

Figure 2b shows the transmission function of the binary
holographic mask required for shaping the wavefunction shown
in Fig. 1a. Figure 2c shows the diffraction pattern obtained at the
back focal plane when passing a plane wave through this mask.
The central waveform is the zeroth-order diffraction pattern.
The non-diffracting wavefunction is on the left, and its complex

conjugate appears on the right, corresponding to +1 and −1
diffraction orders, both having BSS of 140 nm. Figure 2d singles
out the first diffraction order, showing a very good agreement
with the desired pattern of Fig. 2e, which represents the absolute
value of ϕ(ρ)—the non-diffracting wavefunction defined by Eqs
(6) and (7).

Evolution of multi-electrons beams. At this point it is important
to simulate the propagation dynamics of the multi-electron beams
we have found, which are meant to be shape-invariant for some
finite propagation range, and compare them to the evolution of
the Bessel beam (the diffractionless solution for a single-electron)
and to the evolution of Gaussian EBeam. To facilitate a
quantitative comparison, we truncate all three beams by the same
BSS. The simulation method used for the 2D + 1 quantum system
(described in Eqs (4) and (5)) is the beam propagation method
(or split step Fourier method), with the addition of a procedure
calculating the potential U at each step. Specifically, given an

Our non-diffracting binary
mask

Electron gun

Electron beam

Low charge density

Collimation lens

a

b

c

d e

Back focal plane

Non-diffracting range

14
10

6
z [μm

]

Sample

The desired
wavefunction

First-order
diffraction pattern

Order – 2
Order – 1

10
0 

μm
Order + 1

Order + 2Zeroth order

Demagnification lens

Fig. 2 Holographic generation of the shape-invariant wavefunction of multi-electron beams. a An electron beam is transmitted through a binary with the
shape from Eqs (10 and 11). Then it is focused by a magnetic lens to the Fourier domain at the back focal plane. b Transmission function of the binary mask.
c The diffraction pattern generated by passing a plane wave through this mask at the back focal plane. The center pattern is the zeroth-order diffraction
pattern. The pattern on the left (right) of the zeroth order corresponds to the +1 (−1) diffraction order. This diffraction pattern shows that the diffraction
patterns can be cleanly separated from one another, and that the ±1 orders can be used to generate the non-diffracting wavefunction. d, e Comparison
between the diffraction pattern obtained from the +1 order and the desired wavefunction for which the mask is designed. This demonstrates that a very
good approximation of the desired wavefunction can be generated even with a binary mask fabricated with present technologies (of course adding a phase
mask8 would give an even better result)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00651-z ARTICLE

NATURE COMMUNICATIONS |8:  650 |DOI: 10.1038/s41467-017-00651-z |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


initial wavefunction of some shape ψ(x, y, z), we calculate the
potential U(x, y, z) by solving numerically Eq. (5), for the initial
conditions described in Eq. (8). Then, we use this potential in Eq.
(4) to calculate the beam in the next step (x, y, z + dz), and so on
(see Supplementary Note 2 for further details).

Figure 3 presents the simulated propagation dynamics of
several wavefunctions, displaying the density of the EBeams as a
function of ρ and the propagation distance z. In all of these
examples, the acceleration voltage is 200V (typical TEM energies)
and the current is 5 μA, which is considered a very high current in
microscopes, meant to highlight our findings (ref. 36 presents the
use of such high current together with coherent tip and coherent
EBeam). Here, it is important to note that an EBeam with
acceleration voltage of 200 V and total current of 5 μA carries the
same electron density (in the longitudinal direction, proportional
to the ratio I/

ffiffiffiffi
V

p
) as an EBeam with acceleration voltage of 20 kV

and total current of 50 μA. Therefore, the simulations (Figs 3 and
4) correspond to both cases, up to a scaling constant in the
propagation axis.

In coming to examine the diffraction-broadening effects during
propagation of these beams, we recall that the resolution of
electron microscopes is determined by the region of high density
of electrons (high-current density). It is therefore natural to
examine the width of the region of high electron density in the
beam. Observing Fig. 3, we notice that our non-diffracting
multi-electron wavefunctions exhibit diffraction effects that are
fundamentally different than diffraction of Gaussian beams.
Namely, whereas in Gaussian beams the width expands
monotonically with distance, for the multi-electron non-diffract-
ing wavefunctions—when the scheme (Fig. 2a) allows enough
oscillating lobes, the main lobe maintains its width and shape for
a very large distance. The finite extent of the non-diffracting
wavefunctions is caused by the zeros around the main lobe filling
up until the contrast between the main lobe and secondary lobes
decreases and they merge and broaden. Before this occurs, the
full-width at half-maximum (FWHM) of the main lobe of our
non-diffracting multi-electron beam (Fig. 3e) varies very little
(unlike the truncated Bessel beam whose FWHM varies

considerably, as shown in Fig. 3d). Actually, the resolution of
in electron microscopy is determined by the size of the region of
high intensity (region of high probability). We therefore define a
measure for effective width of the main lobe, as the second
moment of the electron density, measured in the main lobe region
(defined by the zero around it), as

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR R

Main lobe ψ x; yð Þj j2 x2 þ y2ð Þdxdy
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR R
Main lobe ψ x; yð Þj j2dxdy

q : ð12Þ

For the Gaussian wavefunction (which has no zeros), this
effective width is simply the second moment. In all the examples
in Fig. 3, the effective width is w= 16 nm. In this vein, we define
the range of non-diffraction Ld as the distance for which the
effective width is increased by a factor of

ffiffiffi
2

p
. The non-diffraction

ranges of the various beams in Fig. 3 are marked by the horizontal
dashed line in each panel.

Figure 3 shows the simulated evolution of several wavefunc-
tions launched as initial conditions for solving Eqs (6) and (7),
where the single-electron cases (Fig. 3a, b) do not include the
effective potential term (U), while the multi-electron cases
(Fig. 3c–f) include the nonlinear term representing the repulsion
among electrons. Figure 3a, b present the propagation of
single-electron beam of initial Gaussian and Bessel wavefunc-
tions, respectively. Both wavefunctions are launched with BSS of
140 nm (at the back focal plane), which has no effect on the
Gaussian beam (whose width is narrower than the 140 nm), but
truncates the Bessel beam after 10 oscillatory lobes. The single-
electron Gaussian beam exhibits fast diffraction (Ld= 420 nm),
while the single-electron Bessel beam preserves its shape for a
very large range distance (Ld= 14.16 μm). Figure 3c, d present the
corresponding cases for EBeams comprising of multiple electrons.
Clearly, the Gaussian multi-electron beam (Fig. 3c) expands faster
(Ld= 300 nm) than the single-electron Gaussian beam (Fig. 3a),
due to the repulsion among electrons. Likewise, the multi-
electron Bessel beam (Fig. 3d) also expands faster (2.1 μm)
compared to the single-electron case which ideally (had it not
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been truncated) would remain non-diffracting indefinitely
(Fig. 3b). Clearly, the Bessel function is not a suitable non-
diffracting solution of the nonlinear evolution (Eq. (2)). On this
background, Fig. 3e presents the propagation dynamics of our
non-diffracting wavefunction shown in Fig. 1a. Had this
wavefunction not been truncated by the BSS, it would have
preserved its shape indefinitely, in spite of the repulsion among
electrons. The BSS truncates the wavefunction after 17 oscillatory
lobes, and consequently causes the diffraction effects shown in
Fig. 3e. Figure 3f shows the evolution of the same wavefunction in
the presence of additive Gaussian noise. To highlight the
robustness of our findings, Fig. 3f simulates the extreme
case, where the total noise current is equal to the total current
carried by the BSS beam of Fig. 3e, and is uniformly distributed in
real-space. As shown there, the noise does not have any
noticeable effect on the evolution of the non-diffracting
wavefunction of the multi-electron beam, and the propagation
dynamics is robust to deviations from non-ideal launch
conditions.

Examining the diffraction of the multi-electron beam of Fig. 3e
preserves its exact shape up to a propagation distance of Ld= 9.6
μm, and then the main lobe and the entire structure fade away
quickly, within a short distance. Clearly, the non-diffraction range
of the multi-electron non-diffracting beam of Figs. 1a and 3e is
five times larger than the non-diffraction range of the multi-
electron Bessel beam of Fig. 3d. Actually, the non-diffraction
range of our non-diffracting multi-electron beam of Fig. 3e is
closer to the corresponding range of the single-electron Bessel
beam of Fig. 3b.

Altogether, as highlighted by Fig. 3, the wavefunction we find
by seeking propagation-invariant solutions to the multiple-
electron Schrödinger equation is indeed non-diffracting. It
overcomes the repulsion among electrons and the natural
tendency of diffraction broadening inherent in the Schrödinger
equation. Moreover, when this wavefunction is launched with a
finite BSS, it preserves its shape for a distance close to the range of
the corresponding single-electron Bessel beam launched with the
same BSS, in spite of the fact that the multi-electron beam carries
very high current—corresponding to 74,000 electrons per cm.
This fact implies that our non-diffracting multi-electron beams

can be launched from the very same BSS and under the same
noise conditions as Bessel EBeams are launched today in electron
microscopes and in other applications.

Non-diffracting range. Figure 4 presents a quantitative
comparison in the performance between our non-diffracting
multi-electron wavefunction and multi-electron Bessel and
Gaussian beams, all carrying zero OAM. Figure 4 shows the non-
diffraction range as a function of the effective width of the initial
beam, with acceleration voltage of 200 V and current of 5 μA. The
non-diffracting multi-electron beam (solid blue curve) performs
remarkably better than the Gaussian beam (dotted blue curve)
and also considerably better than the Bessel beam (dashed blue
curve). The red curves display the current carried by the main
lobe, solid for our non-diffracting wavefunction and dashed for
the multi-electron Bessel beam. As shown there, the main lobe of
the non-diffracting wavefunction carries more current than
the Bessel beam, in addition to its better performance in terms of
the non-diffraction range.

Interestingly, the dashed blue curve in Fig. 4 (describing the
non-diffraction range of the Bessel beam) has a turn at 4.2 nm.
We refer to this turn as the critical width (black dot-dashed
vertical line), below which the performance of our non-diffracting
wavefunction coincides with that of multi-electron Bessel beam
(launched with the same BSS). We find that this critical width
decreases as we increase the electron density in the beam
(increasing the current), and it can go below 1 nm. This is
because, in the region of very narrow multi-electron beams, that
corresponds to kT much larger than the inverse of the critical
width, the potential satisfying Eq. (7) with initial condition
U ρ ¼ 0ð Þ ¼ �k2T goes to a constant. This makes the wavefunc-
tion obeying Eq. (6) coincide with the Bessel function, hence—in
this specific regime—their performances (non-diffraction
range and current carried by the main lobe) coincide as well.
However, in the entire other regime (where the width of the
main lobe is larger than the critical width), the structure
of our non-diffracting multi-electron beam is different than the
Bessel wavefunction, and our non-diffracting beam performs
much better than the Bessel beam, as highlighted by Fig. 4. The
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Supplementary Note 5 presents a comprehensive numerical study
of the propagation of the beams as a function of the BSS.

Another important feature that can be seen in Fig. 4 is that the
width of our non-diffracting wavefunction is bounded from
above, at the blue dot (henceforth referred to as the maximal
width), where the main lobe is over-wide. This over-wide
wavefunction also marks the upper limit on the current. The
reason for the existence of this upper limit is that the interference
effects caused by the shape of our multi-electron wavepacket can
balance the beam’s self-repulsion and diffraction only up to a
certain electron density, above which the repulsion is too strong
to be compensated by the predesigned interference effects. This
upper limit point occurs for kT= 0, which corresponds to
the beam with the widest main lobe (Fig. 1b). The main lobe of
this maximum-width non-diffracting wavefunction carries
considerably higher current than the main lobe of the
corresponding multi-electron Bessel beam.

It is now interesting to study the propagation evolution of the
shape-invariant multi-electrons beams that do carry OAM, such
as those shown in Fig. 1c. Figure 5a–c present the simulated
propagation of such wavefunctions (while neglecting the
spin–spin and spin–orbit interaction; see Supplementary Note 3),
with acceleration voltage of 200 V and current of 5 μA. Figure 5a,
b show the propagation of initial wavefunction of Gaussian and
Bessel shapes, with OAM= 1, respectively. Figure 5c presents the
propagation of our non-diffracting wavefunction with OAM= 1.
Similar to the case without OAM, the non-diffraction range of
our non-diffracting beam (Fig. 5c) is much larger than the non-
diffraction range of the Bessel beam (Fig. 5b). The performance of
these multi-electron beams carrying OAM is similar to the trend
shown in Fig. 4: the non-diffraction range is order of magnitude
larger than for multi-electron Gaussian and Bessel beams, and is
in fact similar to the non-diffraction range of the respective
single-electron Bessel beam launched with the same BSS.

Non-diffracting ultrashort-pulse EBeams. Finally, up to this
point—the discussion was with continuous wave EBeams. How-
ever, one of the most important applications of high-density
EBeams is in the ultrafast regime, when they are excited by an
ultrafast optical pulse24, 25, 28. It is therefore important to study
the 3D evolution of an ultrashort multi-electron pulse, which has
the spatial shape of our non-diffracting wavefunction. A pulsed
wavefunction has inherently a broad energy spectrum—because it
is pulsed, therefore simulating the evolution of an ultrashort
multi-electron pulse also examines the robustness to energy
broadening and to modifications in the beam current (see further
discussion in Supplementary Note 4 on the stability to
modifications in the current and energy broadening).

To this end, we simulate the 3D + time propagation of our
non-diffracting multi-electrons beam and compare to that of a
Bessel beam. Figure 6 shows the temporal evolution of such

multi-electron pulsed beams. We design the 3D non-diffracting
wavefunction as the solution of Eqs (6) and (7) (or the Bessel
wavefunction) in the x–y plane and superimpose on it a
super-Gaussian in the propagation direction z, as described by

ψnon�diffracting r; t ¼ 0ð Þ ¼ 1
a0

ϕ ρð Þ e
� z4

2L4ffiffiffi
L

p ; ð13Þ

ψBessel r; t ¼ 0ð Þ ¼ 1
a0

J0 kTρð Þ e
� z4

2L4ffiffiffi
L

p ; ð14Þ

where ϕ(ρ) is the non-diffracting solution of eqs (6) and (7), J0 is
the zero-order Bessel function, and L is the spatial extent of the
pulse (pulse duration times group velocity).

The three columns in Fig. 6 show the evolution of the 3D
wavefunctions at different times, t= 0 s, t= 250 fs and t= 500 fs.
The left column in Fig. 6 presents the 3D evolution of our
non-diffracting wavefunction, while the right column shows the
3D evolution of a Bessel beam. The simulations parameters are
acceleration voltage of 20 kV, 100 electrons in a pulse of duration
of ~200 fs (L= 100 fs), which is just about the shortest ultrashort
pulses in electron microscopy52–54. Technically, launching such a
non-diffracting ultrashort electron pulse would require incorpor-
ating the holographic scheme of Fig. 2 in the system of refs 52–54.
The solid blue lines show radial cross-sections of the beam at the
launch plane z= 0 at t= 0, while the green dashed lines show
beam cross-sections at the center of the pulse, as the beam is
evolving with z= vt. The red dotted lines show beam cross-
sections integrated over the longitudinal (z) extent of the pulse, at
different times, which corresponds to the quantity actually
measured in experiments. Left inserts: transverse shape of the
wavefunctions (|ψ(x, y, z= vt)|2). Right inserts: longitudinal shape
of the pulse (|ψ(x, y= 0, z − vt)|2). Our non-diffracting beam
preserves its shape in space and time up to ~500 fs, while the
Bessel beam expands considerably already at 200 fs. It is worth
noting that, as a result of the finite extent of the wavefunction in
the z direction, the beam gets compressed at the beginning and at
the end of the pulse (z=±L from Eqs (13) and (14)), while in the
central region it maintains its shape. The reason for the
compression at the pulse edges is that the electron density there
is low; hence, the repulsion among the electrons in these regions
is weaker than at the pulse center, and the interference effects of
the side lobes overcompensate the repulsion.

The Supplementary Movie 1 (Temporal evolution of
multi-electron pulsed beams) displays a simulation, showing the
3D + time evolution, and Supplementary Movie 2 (Spectral
evolution of multi-electron pulsed beams) depicting the evolution
of the power-spectrum of the 3D wavefunctions, caused by the
electron–electron interaction. The spectrum of the pulse is
broadened during evolution—due to the nonlinear effects
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associated with the repulsion. More specifically, linear dispersion
just affects the phases of the frequency components, but here we
have a nonlinear interaction term (the repulsion between
electrons) which does broaden the spectrum. It is important to
note that the effect of this spectral broadening on the transverse
shape of the non-diffracting multi-electron pulse is very minor
(as shown in Fig. 6), because the shape of this EBeam is robust to
spectral broadening (see Supplementary Movie 2).

Discussion
Before closing, it is important to discuss the potential applications
of our findings. Clearly, the non-diffracting multi-electron beams
found here have inherent fundamental importance—similar to
the impact made by the optical Bessel beam (which was the first
non-diffracting beam discovered). In addition, the concept of
non-diffracting multi-electron beams also has profound potential
for applications, especially in electron microscopy. Specifically,
the current in electron microscopes is proportional to the density
of electrons. Converting to the spatial density only requires
dividing by the velocity; hence, the nonlinear term in Eqs (6) and

(7) is proportional to the current divided by the square root of the
acceleration voltage (for nonrelativistic EBeams). Therefore,
significant repulsion among electrons can arise either from high-
current EBeam or from low-acceleration voltage. SEM and STEM
work by focusing the EBeam on the sample under study, hence
the resolution in both of them is determined by the diameter of
focused spot (in TEM, the EBeam incident on the sample is
broad, and the repulsion in that plane is negligible). Naturally,
employing SEM and STEM in the high-current regime (tens to
hundreds of micro-Amperes) would make the EBeam broaden
after very short distances due to the repulsion55, which is exactly
what our technique can counteract. Under realistic parameters of
current SEM technology, our technique can increase the current
density by at least factor 106 while maintaining resolution of 1 nm
(assuming that the high current does not damage the SEM
components and the sample). In an alternative application, our
method can be exploited in LEEM56, 57 to counteract the repul-
sive loss of resolution (that is especially significant due to the very
low velocities). Likewise, our technique can be very
important to microscopes working with ultrashort pulses of
electrons (ultrafast electron microscopy)24, 28, where the electron
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density could be very high due to the ultrashort duration of the
pulse.

When working with ultrafast pulses of multi-electron beams, it
is important to note that, even though our non-diffracting beam
is designed for a monochromatic source, the 3D simulation shows
that the actual pulse—which has a considerable bandwidth—
works well as a non-diffracting beam. For the same reason,
chromatic aberrations, which often occur in microscopes with
high electron densities, do not pose a problem: the beam is
non-diffracting even if its bandwidth is considerably expanded by
the chromatic aberations and space charge field effects in the
propagation direction.

To conclude, we have shown that the wavefunctions of
multi-electron beams, or any other beams of charged particles,
e.g., protons, muons and ion beams, can be properly designed to
compensate for both space-charge (self-repulsion) effects
and diffraction broadening, and can even carry OAM. Our
simulations predict that our shaped non-diffracting beams
perform remarkably better than the multi-electron Bessel and
Gaussian EBeams. The design methodology presented here finds
applications in electron microscopy, electron beam lithography,
accelerators and a variety of other applications. Using our shaped
multi-electron beams in low-energy and high-current micro-
scopes, one can still achieve high resolution despite the repulsion
among the electrons. Essentially, what we suggest here can resolve
the space-charge field effects that appear in all technologies using
beams of multiple electrons. In this vein, we also present a
full-scale simulation of the 3D+time evolution of an ultrashort
electron pulse, which has inherently a broad energy spectrum.
Still, our wavefunction preserves its shape despite the broad
energy spectrum. Finally, we recall the resemblance of our model
for multi-electron beams to the Newton–Schrödinger model
known from General Relativity (with the exception that the force
in our EBeam is repulsive, whereas the force in the
Newton–Schrödinger model is attractive). We also note the
similarity of our non-diffracting multi-electron beams to solitons
in nonlocal nonlinear media in optics and in cold atomic dipoles.
These resemblances raise a series of intriguing questions, among
them: the existence of dark solitons made of multi-electron
beams, and long-range interactions among such self-trapped
entities.

Data availability. The data that support the findings of this study
are available from the corresponding author upon reasonable
request.
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