
 

Nonperturbative Quantum Electrodynamics in the Cherenkov Effect

Charles Roques-Carmes,1,* Nicholas Rivera,2 John D. Joannopoulos,2 Marin Soljačić,1,2 and Ido Kaminer3,†
1Research Laboratory of Electronics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

(Received 1 April 2018; revised manuscript received 18 July 2018; published 17 October 2018)

Quantum electrodynamics (QED) is one of themost precisely tested theories in the history of science, giving
accurate predictions to a wide range of experimental observations. Recent experimental advances allow for the
ability to probe physics on extremely short attosecond timescales, enabling ultrafast imaging of quantum
dynamics. It is of great interest to extend our understanding of short-time quantumdynamics toQED,where the
focus is typically on long-timeobservables such asSmatrices, decay rates, and cross sections.That said, solving
the short-time dynamics of the QED Hamiltonian can lead to divergences, making it unclear how to arrive at
physical predictions. We present an approach to regularize QED at short times and apply it to the problem of
free-electron radiation into amedium, known asCherenkov radiation. Our regularizationmethod,which can be
extended to otherQEDprocesses, is performed by subtracting the self-energy in free space from the self-energy
calculated in the medium. Surprisingly, we find a number of previously unknown phenomena yielding
corrections to the conventional Cherenkov effect that could be observed in current experiments. Specifically,
the Cherenkov velocity threshold increases relative to the famous conventional theory. Thismodification to the
conventional theory, which can be non-negligible in realistic scenarios, should result in the suppression of
spontaneous emission in readily available experiments. Finally, we reveal a bifurcation process creating
radiation into new Cherenkov angles, occurring in the strong-coupling regime, which would be realizable by
considering the radiation dynamics of highly charged ions. Our results shed light on QED phenomena at short
times and reveal surprising new physics in the Cherenkov effect.
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I. INTRODUCTION

One of the early achievements of quantum electrody-
namics (QED) was the accurate match of the predicted
hydrogen-energy-level shifts with the experiments by
Lamb and Retherford [1]. This significant accomplishment
was allowed by the work of Tomonaga [2], Bethe [3],
Schwinger [4], and Feynman [5] and the later unification by
Dyson [6]. They eliminated the problematic divergence
of the Lamb-Retherford shift due to the photon loop
correction to the atom’s propagator. Renormalization of
the electron mass also led to a very precise agreement
with the experimentally measured values of the Lamb-
Retherford line shift [1], the anomalous magnetic moment
of the electron [7], and the anomalous hyperfine splitting of
the ground state of the hydrogen atom [8]. Since these early

successes, QED has been one of the most accurate theories
of modern physics and bolstered fundamental develop-
ments, from quantum field theory to grand unified theories.
Central to calculations in QED and other field theories is
the S matrix, representing the long-time transition ampli-
tude between an initial state and some final state [9–11].
From the S matrices, one can derive many important
observables such as decay rates, cross sections, and self-
energies, which have been successfully used to calculate a
great variety of effects in particle physics, condensed matter
physics, atomic physics, and many other fields. Despite
these successes, S-matrix methods are essentially used to
make predictions at infinite times. Altogether in QED, very
few studies consider the physics at short times (e.g.,
Refs. [12–14]) and almost none when considering the
coupling to a continuum of electromagnetic modes. We
still lack the basic methods to describe the short-time
dynamics in such systems, where it remained unknown
how to apply renormalization at finite times.
One of the emblematic problems in light-matter inter-

action that can be used as a testing ground for new ideas in
QED is the Vavilov-Cherenkov effect (abbreviated as the
Cherenkov effect)—the radiation by a charged particle
propagating in a dispersive medium at a speed larger than
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the phase velocity of light in the medium. It is the leading-
order process in the radiation by a free electron in a medium
and is the fundamental building block for any diagram
describing the interaction of charges with photons in a
medium. This effect was originally observed by Vavilov
and Cherenkov in 1934 [15,16] and later explained by
Frank and Tamm [17]. Most of the quantum treatment of
this problem, which originated from Ginzburg’s Ph.D.
thesis [18], did not result in a significant deviation from
the original prediction by Frank and Tamm [17]. Even later
theories taking into account higher-order processes did not
find regimes where the quantum nature of the interacting
particles would result in a significant mismatch from the
original prediction of Frank and Tamm [17–19]. Only
recently was it theoretically predicted that quantum effects
could emerge in the optical regime when taking into
account the quantum recoil of the electron or shaping
the electron wave function [20].
Despite the many years that have passed since the original

discovery of the Cherenkov effect, it continues to lead to new
discoveries in different systems including heavy-ion jets
[21–26], nonlinear phase-matched systems [27–33], moving
vortices in Josephson junctions [34,35], condensed-matter
analogue models of gravitational physics, and moving
dipoles showing the hybridization of the Cherenkov and
Doppler effects [36–38]. The concept of the Cherenkov
velocity threshold is also found in the theory of superfluidity
and Landau damping of highly confined plasmons [39,40],
two topics of major interest these days. New physics in the
Cherenkov effect, such as backward Cherenkov radiation
[41], was unveiled with free electrons propagating in
complex nanophotonic systems: photonic crystals [42],
metamaterials [43–45], plasmonic systems [46], and gra-
phene [47]. This continued interest in explaining the theory
of Cherenkov radiation in novel settings originates in its
wide range of applications, from high-energy particle
characterization [48] to biomedical imaging [49].
The Cherenkov effect follows the Frank-Tamm formula

that gives the rate of photon emission per unit frequency
∂εΓrad ¼ ½ðαZβÞ=ℏ�f1 − ½1=ðnεβÞ2�g. In this expression,
αZ ¼ Z2α is the effective fine-structure constant, α ≈
1=137 being the fine-structure constant and Z the particle
charge; β ¼ v=c, v being the electron speed and nε the
refractive index of the medium (function of the photon
energy ε ¼ ℏω). From the Frank-Tamm formula and its
generalizations to nanostructured optical systems or
anomalous cases [42,50], one sees that, in the optical
regime, the timescale at which a photon is emitted in the
medium is between picoseconds and femtoseconds.
Physics at these timescales was unveiled at the turn of
the millennium with the development of ultrafast optics,
light-wave electronics, and high harmonic generation [51].
Today, the integration of electron optics with optical
technologies allows the probing of atomic transitions
[51], molecular bonding [52], and even more recently

dynamics of plasmonic systems [53–59]. Given these
new experimental techniques, it is timely to ask how the
long-standing physics of the Cherenkov effect changes at
very short timescales.
In this article, we develop a general framework for time-

dependent QED, which is free of short-time divergences,
and use our framework to reveal new underlying phenom-
ena in Cherenkov radiation. This process yields concrete
closed-form solutions of the power spectrum of photon
emission and a surprising increase in the Cherenkov
velocity threshold. Applying our theory to probe the time
dependence of the emitted radiation from a charged particle
propagating in a medium, we observe new quantum
phenomena in the Cherenkov effect. Even when the
electron and photon are weakly coupled (α ≪ 1), the
well-known Cherenkov dispersion relation is modified
from the known one on account of a nonzero self-energy
associated with the virtual emission and reabsorption of
photons in the medium. When pushing the limits of our
formalism to strongly coupled regimes ðαZ2 ≳ 1Þ, we find
evidence of regimes where the electron experiences a
nonexponential decay and the Cherenkov dispersion rela-
tion changes drastically. In these strongly coupled settings,
we predict the emergence of multiple Cherenkov lines that
can be tested in existing experiments such as heavy-ion
colliders. More generally, the Cherenkov effect provides us
with a powerful playground to develop new general tools
for time-dependent QED. Our work suggests applications
in the study of fundamental effects in attosecond physics,
such as high harmonic generation, and new experimental
endeavors of Cherenkov radiation and its analogues in
strongly coupled settings.

II. TIME-DEPENDENT NONPERTURBATIVE
THEORY OF CHERENKOV RADIATION

We consider the system shown in Fig. 1. A charged
particle, such as a single electron or a highly charged ion,
is propagating at speed v ¼ βc inside a lossless material
defined by its refractive index nε. According to the conven-
tional Cherenkov theory, if the particle velocity surpasses
the speed of light in the medium β > c=nε, it emits a
photon of energy ε at angle θC relative to the electron
trajectory, satisfying the condition [Fig. 1(a)] cos θC ¼
½1=ðnεβÞ� [17]. This energy-angle relation is a direct
consequence of energy-momentum conservation [60],
while the photon emission rate per unit energy can be
derived from Fermi’s golden rule [18].
We solve for the time dependence of the time-evolution

operator corresponding to the QED Hamiltonian using the
resolvent method [10]. This method allows us to perform
resummations of partial sets of the perturbation series
in a compact algebraic formulation while maintaining
dynamical information of the correlated electron-photon
wave function. The method works as follows: We refor-
mulate the Schrödinger equation in terms of the resolvent
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operator GðzÞ ¼ ðz −HÞ−1, which is the complex-variable
Fourier transform of the unitary time-evolution operator,
used to determine the time-dependent electron-photon
wave function. The matrix elements of G represent the
Fourier transform of transition amplitudes between differ-
ent states. We first derive a matrix equation for G0 ≡
hp; 0jGjp; 0i (for more details on the formalism and the
QED Hamiltonian, we refer to Appendix A). Inverting the
matrix equation and moving back into the time domain, we
find the following expressions for the evolution operator
projected on the zero-photon stateU0ðtÞ and the probability
of observing a photon p1ðtÞ:

U0ðtÞ ¼
1

π
e−iEit=ℏ

Z
R
dz e−izt=ℏ

ΓðzÞ
2

½z − ΔðzÞ�2 þ ðΓðzÞ
2
Þ2
; ð1Þ

p1ðtÞ ¼
1

ℏ2

Z
dz

ΓðzÞ
2

����
Z

t

0

dt0e−izt0=ℏeiEit0=ℏU0ðt0Þ
����2; ð2Þ

where Ei (respectively, Ef) is the charged particle’s
initial (final) energy and p0 ¼ jU0j2 the probability of
the electron being in a state with zero photons. Equation (1)
can be seen as a modification of the exponential decay law.
In particular, when ΔðzÞ and ΓðzÞ are constant, this
corresponds to the usual exponential decay law for sponta-
neous emission which is valid at intermediate times.
Similar modifications have been studied in the case of
two-level systems [10] and for quasistationary states [61].
From Eqs. (1) and (2), one can derive time-dependent
physical observables such as the spectrum of emitted
photons per unit angle and per unit frequency
∂2p1=∂ε∂u, which can also be used to determine the rate
of photon emission. Figure 2 shows several examples of
such spectral emission rates. In Eq. (1), ΔðzÞ and ΓðzÞ,
which fully specify the dynamics of the system, are the real
and imaginary parts, respectively, of the self-energy of the

electron fðzÞ [also known as the radiative shift in atomic,
molecular, and optical (AMO) physics]:

fðzþ i0∓Þ ¼ αZβ
2

2π

Z
∞

0

dε
Z

1

−1
du

nεεð1 − u2Þ
zþ i0∓ − εð1 − nεβuÞ

≔ ΔðzÞ � i
ΓðzÞ
2

: ð3Þ

The real and imaginary parts of the self-energy function can
be written analytically as

ΔðzÞ ¼ αZβ

2π

Z
∞

0

dε
�
2ðz − εÞ
nεεβ

�

þ
�
1 −

�
z − ε

nεεβ

�
2
�
log

���� zþ ε½nεβ − 1�
z − ε½nεβ þ 1�

����; ð4Þ

ΓðzÞ
2

¼ αZβ

2

Z
∞

0

dε

�
1−
�
ε− z
εnεβ

�
2
�
Θ
��

ε− z
εnεβ

�
2

≤ 1

�
; ð5Þ

respectively, where Θ½.� ¼ 1 if the condition between
brackets is satisfied, Θ½.� ¼ 0 otherwise.
Δð0Þ and Γð0Þ exactly match the real and imaginary part,

respectively, of the radiative shift calculated via the second-
order perturbation theory in the weak-coupling regime.
More generally, ΔðzÞ and ΓðzÞ correspond to the second-
order perturbation of the energy, shifted by the complex
frequency variable z. Our approach is nonperturbative in
the sense that the self-energy function models absorption
and reemission cycles of the photon before a final photon
emission, thus taking into account an infinite sum of single-
loop Feynman diagrams (see Fig. S4 in Supplemental
Material [62]). We add additional diagrams altering the
electron after the photon emission, showing quantitative
corrections but no qualitative changes to our predictions
(see Ref. [62], Sec. I). Our theory could be extended to take

(a) (b) (c)

FIG. 1. The quantum Cherenkov effect. (a) Conventional Cherenkov effect. (b) Regularized quantum Cherenkov effect for an electron
(weak coupling), where the particle’s regularized self-energy is a small correction. (c) Regularized quantum Cherenkov effect for a
highly charged ion, where the self-energy results in large corrections.
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into account higher-order processes with a more sophisti-
cated numerical treatment [63].

III. THE RADIATIVE SHIFT OF THE
FREE ELECTRON

Upon a first evaluation of the self-energy, we find that
the real part features a UV divergence as a result of the
unbounded photonic density of states at high energies [64],
even when the index of refraction is too low for Cherenkov
radiation. Nevertheless, we regularize the self-energy
function in a way that agrees with physical predictions,
by subtracting its free-space part (nε ≡ 1):

fðzÞ → fðzÞ − fðz; nε ≡ 1Þ: ð6Þ

To get the conservation of probability, we substitute the
regularized form of ΓðzÞ in Eq. (2), which yields
p0ðtÞ þ p1ðtÞ≡ 1. Regularizing the spectral angular den-
sity of the emitted photon also suppresses unphysical
emission in free space (see Appendix B and Ref. [62],
Sec. I, for further discussion of this point). This approach
could be extended to any optical medium, as it takes into
account material dispersion, and can be directly generalized
to arbitrary geometries of photonic structures, by taking
into account the eigenmodes of Maxwell’s equations for
such structures. Thus, our approach can be used in a
wide range of phenomena stemming from the Cherenkov
effect, including Cherenkov variants in 2D materials
[47,65], in circuit QED [34,35], and in heavy-ion physics
[22]. Moreover, this regularization approach can

be extended to other types of electron-photon interactions.
For example, we propose a regularization scheme to give
well-defined time dynamics for electron-photon (Compton)
scattering in vacuum in Ref. [62], Sec. III.
When the coupling to light is weak—as in the case of an

electron moving through a typical optical medium—we
find that the contribution of the self-energy function in
Eqs. (1) and (2) can be approximated by its value taken at
the zero of ΔðzÞ − z, which we denote as z0 ¼ Δðz0Þ. This
approximation, known as the flat-continuum approxima-
tion, retains validity when the decay rate or linewidth of the
electron-emission process associated with Cherenkov radi-
ation is much narrower than the frequency variation of the
photonic density of states.
We find that the real part of the self-energy—known as

the radiative shift z0 [10]—is typically of the order of
−αβ2=ð2πÞΔε ∼ −0.001 eV for a single electron in the
optical regime [see Appendix C, Eq. (C12)]. This free-
electron radiative shift is significantly greater than its
atomic counterpart—the Lamb-Retherford shift [1]—and,
as a result, leads to potentially large corrections to quantum
observables for small photon energies or particle velocities
close to the conventional Cherenkov threshold (nεβ → 1).
In particular, it modifies the well-established Cherenkov
rate of emission to become

∂εΓ̄rad ¼
αZβ

ℏ

�
1 −

�
ε − z0
εnεβ

�
2
�
: ð7Þ

(We denote with a bar sign every quantum observable and
state probability from our regularized theory—taking into

(a) (b)

(c) (d)

FIG. 2. Nonperturbative self-energy-induced modifications to Cherenkov radiation in weakly and strongly coupled regimes.
(a) [respectively, (c)] An electron propagating at velocity β ¼ 0.9999 (respectively, β ¼ 0.7) in a chamber filled with CF4 gas
(respectively, in a material of constant index equal to 4) emits a photon with spectral angular density ½ð∂2p1Þ=ð∂ε∂uÞ�ðtÞ, where
u ¼ cos θ shown in (b) [respectively, (d)] at different times. The gradual narrowing of the Cherenkov energy-angle relation for long
times is a direct consequence of the time-energy uncertainty principle.
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account the particle-regularized self-energy—in contrast to
the conventional Cherenkov theory.) Additional corrections
can come up from our quantum formalism. They typically
include the electron recoil due to the Cherenkov emission
of a single photon [20,47], which depends on the photon
momentum nεε=c relative to the electron momentum
βEi=c. The radiation-angle correction is proportional to
the radiative shift z0 and to the electron recoil. In scenarios
where the electron recoil is large [47], we expect to observe
additional large self-energy corrections. Even without
electron recoil, the radiative shift z0 still significantly
modifies the Cherenkov decay rate. This modification
makes the new quantum corrections that we find far bigger
than any previously found quantum effects in Cherenkov
radiation [18,20].
Figure 3 shows that the account of the nonperturbative

self-energy can shift the well-known Cherenkov threshold:
1=ðnεβÞ ≤ ε=ðε − z0Þ ≈ 1þ z0=ε for small negative values
of z0. As a consequence, the regularized rate of emission
∂εΓ̄rad converges to zero when approaching the regularized

Cherenkov threshold: In an experiment, this convergence
translates into arbitrarily fewer photons emitted, compared
to the conventional prediction. The most extreme deviation
is found when the particle velocity is above the conven-
tional threshold and below the regularized threshold, where
the conventional theory predicts a finite rate of emission,
while the regularized theory states that the spontaneous
emission of a photon is forbidden.
Far above the conventional Cherenkov velocity thresh-

old, the values of the regularized decay rate Γðz0Þ ¼ Γ0 and
of the conventional decay rate Γðz ¼ 0Þ agree, as can be
seen in Fig. 3(b). However, the divergence of 1=Γ0 around
β ≳ β̄th results in arbitrarily small decay rates that directly
translate on the dynamics of p0ðtÞ, as illustrated in
Fig. 4(a). While the conventional theory predicts a total
absence of decay below the conventional Cherenkov
threshold, the regularized probability of the zero-photon
state decays to a value of 1=f1 − ½dΔðzÞ=dz�jz0g2 slightly
below unity [Fig. 3(b)]. This result could be interpreted as
the electron transitioning to a modified ground state of its
energy dressed by the Cherenkov coupling, or it may

(a)

(b)

FIG. 3. The modified Cherenkov velocity threshold. (a) Regu-
larized decay rate (blue curve) as a function of the distance to the
conventional Cherenkov threshold βth, above this threshold.
(b) Probability of no Cherenkov emission p0ðþ∞Þ as a function
of the distance to the conventional Cherenkov threshold β̄th,
below this threshold. The system considered for this example is a
single electron traversing an index window defined by nε ¼
2 � 1ðε ∈ ½0; 5 eV�Þ [where 1ðε ∈ AÞ is the indicator function of
a subset of energies A]; however, similar effects occur regardless
of the choice of particle or transparent index medium.

(b)

(a)

FIG. 4. Modified time dynamics in weakly and strongly
coupled regimes. (a) Comparison of the regularized and conven-
tional evolution of p0ðtÞ for an electron very close to the
regularized Cherenkov threshold β − β̄th ≈ 3 × 10−5. Here, an
electron propagating at a speed of β ¼ 0.5004 emits a photon
(e.g., its zero-photon state probability decays) at a rate that is 2
orders of magnitude less than the conventional prediction. (b) In
strongly coupled regimes, the presence of several poles of the
function fðzÞ can result in a pseudoperiodic decay of p0ðtÞ.
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complete a full decay when introducing higher-order
diagrams including additional, multiple, photons. Far
below the conventional Cherenkov threshold, the behaviors
of the conventional and regularized theories match again.
We observe a discontinuous transition in the behavior
above and below the Cherenkov velocity threshold, which
is essentially due to a discontinuous derivative of ΓðzÞ.
However, we expect higher-order processes, that are
neglected in the current formalism, to smoothen this
transition: For multiphoton emission processes, the phase
space for emission is larger, allowing for the emission of
photons that do not individually satisfy the conventional
Cherenkov relation.
This modification of the Cherenkov threshold has direct

implications on the time-dependent spectrum of Cherenkov
radiation, compared to the conventional theory. Our theory
reveals ultrafast dynamics of Cherenkov radiation, for which
we already observe significant modifications to the well-
known observables: its energy-angle relation and the corre-
sponding photon rate of emission. Specifically, Fig. 2(b)
shows the implications of the time-energy uncertainty
principle broadening the Cherenkov dispersion at very short
times. These new effects can be seen through the flat-
continuum approximation [10], where the radiative shift z0
results in an effective decay rate that we denote as
Γ0 ¼ Γðz0Þ. This approximation can be applied to
Eq. (1), as it resembles the Fourier transform of a
Lorentzian peaked at z ¼ z0. The Fourier transform yields
an exponential decay with the rate Γ0=ℏ: U0ðtÞ ≈
e−iðEiþz0Þt=ℏe−Γ0t=2ℏ [p0ðtÞ ≈ e−Γ0t=ℏ] with ∂2p1ðtÞ=∂ε∂u
peaked around Ef − Ei ¼ z0, corresponding to the regular-
ized Cherenkov dispersion relation shown in Fig. 1(b), with
a finite width in the angular domain proportional to Γ0

[Fig. 2(b)]. However, our predictions remain qualitatively
valid only for times comparable to or less than the effective
decay time of the zero-photon state ℏ=Γ0, after which it is no
longer legitimate to assume a single photon is emitted. To
account for longer times, it is necessary to extend the
dimension of the initial Hilbert space, allowing the emission
of more than a single photon (such an approach is proposed
and discussed in Ref. [62], Sec. I). For dynamics at short
timescales of the Cherenkov effect, which are of primary
interest, this restriction is unimportant, and our theory
remains predictive.

IV. BIFURCATION BETWEEN WEAKLY AND
STRONGLY COUPLED REGIMES

Intriguing consequences of our nonperturbative formal-
ism arise when pushing the limits of our formalism to the
strong-coupling regime in which the effective fine-structure
constant significantly increases, αZ ¼ Z2α≳ 1, leading to
the collapse of the flat-continuum approximation, which
was accurately describing the physics above but does not
hold here. Note that while in typical quantum field theories

the coupling constants scale like αZ, the coupling relevant
to the Cherenkov effect actually scales like αZ2, because it
is an effect of a single vertex diagram. Physically, the strong
coupling could be realized in the Cherenkov dynamics of
highly charged ions. In the strongly coupled case, we find
that multiple zeros, zi, of ΔðziÞ − zi ¼ 0 exist, allowing for
a multibranched Cherenkov dispersion relation, with
multiple Cherenkov angles θi satisfying cos θi ¼ ½ðϵ − ziÞ=
ðnϵϵβÞ� for multiple zi, as illustrated in Fig. 1(c). In
Fig. 2(c), we consider the specific case of an Fe26þ ion
moving at v ¼ 0.7c, corresponding to a kinetic energy of
20 GeV, as might be realized for various particles in large
accelerator facilities [67] and high-intensity plasma wake-
field accelerators [68]. Coincidentally, laser acceleration of
iron atoms has recently reached nearby energy scales [69].
In this particular case, where the effective fine-structure
constant is about 4.9, we see that, at long times, the spectral
distribution of emitted photons is highly concentrated
around two angle-frequency relations, both substantially
different from the conventional Cherenkov relation. These
photons are emitted over a short timescale, ti ∼ 1=ΓðziÞ, of
the order of femtoseconds. Interestingly, we find that, for
some emission frequencies, the emission angles can be
backwards relative to the direction of electron motion,
which is impossible in the conventional Cherenkov effect
without a negative index of refraction.
Considering the detailed time dynamics of the charge,

we find that these multiple poles can translate into a
pseudoperiodic decay of the zero-photon state, as can be
seen in Fig. 4(b) for a Fe26þ. Pushing the effective charge to
even larger values, we predict Rabi oscillations of the zero-
photon probability, when the imaginary part of one of the
poles cancels out (see Ref. [62], Sec. I). These damped
Rabi oscillations are similar to those experienced by an
atom in strong coupling with a lossy cavity mode [70].
Quantum Rabi oscillations have recently been investigated
in ultrastrong-coupling regimes of cavity [71] and circuit
QED [72], where a method for treating multiple discrete
photonic modes has been proposed. Importantly, unlike
bound charge systems that have discrete energy levels, here
we work with a charged particle that can take a continuum
of energy values. Moreover, the energy scale of free-charge
transitions is not limited by the energy levels of AMO
systems (can reach the x- or gamma-ray scale and not only
visible or IR or below). We should expect new effects that
have not been observed in cavity QED, such as the exciting
perspective of observing ultrastrong-coupling physics from
a single particle in the optical regime. These considerations
make the appearance of AMO-physics-inspired phenomena
like Rabi oscillation appealing, as no work has ever
demonstrated free-charge vacuum Rabi oscillations and
related phenomena. Our method could bridge the gap
between AMO physics and free-charge physics, allowing
us to systematically translate ground-breaking results in
AMO to light-matter interactions with free charges.
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To reveal the underlying physics, we analyze the relation
between the new nonperturbative Cherenkov dynamics and
the pole structure of the regularized self-energy. We show
in Fig. 5 how an abrupt change in the pole structure signals
a bifurcation process between the conventional Cherenkov
dynamics and the strong-coupling physics reported in
Fig. 2(c). This transition is characteristic of a bifurcation
process, as a small change of a parameter (here, the electron
velocity β or the particle charge Z) can result in the
emergence of new branches of poles or the cancellation
of their imaginary part. Physically, these abrupt changes
in the pole structure result, respectively, in new multiple
decay modes and Rabi-like oscillations of the decay rate. In
order to show the parameter space in which the reported
effects are expected to occur, we study the detailed
dependence of the poles of fðzÞ as a function of the ion
energy [Fig. 5(a)] and as a function of the ion charge Z
altering the effective fine-structure constant αZ [Fig. 5(b)].
Stronger-coupling regimes can be effectively achieved

either by increasing the velocity of a particle of a given
charge Z [Fig. 5(a)] or by increasing the particle’s effective
charge, at a given speed β [Fig. 5(b)]. In both cases, we
denote the emergence of new poles at a given value of β or
Z, corresponding to critical coupling. The emerging poles
always appear in pairs and split along two branches for
larger β or Z. An even larger effective charge results in the
emergence of two supplementary poles before canceling
the real part of the original pole Γ0 ¼ 0 for Z ≥ 56, which
results in the emergence of a Dirac delta function in Eq. (1)
and, thus, in the previously mentioned Rabi oscillations.
Cherenkov radiation from highly charged ions in these

ranges of energies has been experimentally reported in
heavy-ion colliders [25,67]. It is worth mentioning that
anomalous Cherenkov radiation in these settings has been
observed and attributed, at the time, to superluminal
particles—tachyons [26]. The account of the electron
relativistic recoil [19,73] was proposed as an explanation
for the observation of seemingly superluminal particles.
Interestingly, we also predict that the Cherenkov angle of
photons radiated by highly charged ions would verify
1=ðnϵ cos θiÞ > 1 at some frequencies, which is the behav-
ior expected from superluminal particles [26].
QED interactions are conventionally limited by the size

of the fine-structure constant. By increasing the effective
fine-structure constant, we explore strong-coupling physics
in QED and reveal the presence of bifurcation processes in
the Cherenkov effect. The bifurcation is a strong qualitative
indicator of new phenomena occurring in these ranges of
parameters that may occur at quantitatively different
parameters due to other strong-coupling corrections.
These findings point to the possibility of studying the
physics of strong-coupling field theories like quantum
chromodynamics [9], using some of the most commonly
studied and relatively accessible effects of QED. The
presence of a critical parameter (effective fine-structure
constant or electron velocity) with a splitting of the pole
branch is reminiscent of a phase transition. However,
we should include higher-order processes in the calculation
of the nonperturbative self-energy to trust quantitative
predictions in these (ultra)strongly coupled settings.
Additional corrections occur due to electron-positron
creation and annihilation diagrams that dress such high-
energy particles in their steady states (corresponding to
resummations at all orders in αZ [23], which we can safely
neglect when αZ < 1). Further corrections also occur due
to interactions between the ion and the medium that cannot
be described through the macroscopic permittivity of the
medium and require a more extensive microscopic descrip-
tion (e.g., bremsstrahlung). For longer times, higher-order
diagrams should be taken into account in our calculations;
however, it is hard to predict their relative contribution in
strongly coupled regimes: For instance, it has recently been
predicted that the rate of spontaneous photon emission by
an atom in the ultrastrong-coupling regime can actually

(a)

(b)

FIG. 5. Cherenkov radiation in the strongly coupled regime:
bifurcation process causing abrupt changes in Cherenkov angles.
New regimes of behaviors allowed by strong coupling can be
explained by studying the poles of the function fðzÞ. (a) Real
(solid lines) and imaginary (dashed lines) parts of self-energy
fðzÞ as a function of the reduced speed β of a highly charged ion
Fe26þ. (b) Real (circles) and imaginary (rectangles) parts of the
poles of fðzÞ as a function of the effective charge number of an
ion Z, propagating in a dielectric medium defined by an index
window equal to 4. Definitions of weak and strong coupling are
consistent with Ref. [10].
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decrease as the coupling is increased, suggesting some kind
of destructive interference of the bare spontaneous emis-
sion diagram with higher-order diagrams that terminate
with the emission of a single photon [74]. The smaller
decay rate observed in our prediction [Fig. 4(b)] already
suggests partially destructive interference between the
fundamental Cherenkov diagram and our nonperturbative
summation. Higher-order processes and all-order develop-
ments in αZ2 could be integrated in our theory by
adequately modifying the coupling between different terms
of the resolvent operator.

V. CONCLUSION

In summary, we present a method to regularize time-
dependent quantum observables in systems where light and
matter interact. Our theory accounts for the nonperturbative
self-energy in a time-dependent way. Applied to the
Cherenkov effect, we predict readily observable modifica-
tions to the conventional theory in weakly coupled regimes
and propose a pathway to reveal new physics in strongly
coupled regimes that can be effectively achieved with
highly charged ions. The observed bifurcation process in
the strong-coupling regime originates from the behavior of
the self-energy function fðzÞ. Thus, more generally, we
should expect to see similar bifurcation processes in any
system where strong coupling can be effectively achieved
[10]. This observation is especially interesting, since
there are Cherenkov analogues in platforms, such as
superconducting qubits, where strong-coupling physics is
usually observed [34,35], and therefore our predictions
could be tested there.
An experiment involving Cherenkov radiation in the

strong-coupling regime may also furnish new tests of
radiation reaction in dielectric media [75], which is based
on the observation that radiation-reaction effects are man-
ifested in the self-energy of the system of the charged
particle and the quantized electromagnetic field [76,77].
Further physical understanding of the self-energy can
also be provided by adequately transforming the QED
Hamiltonian via the Pauli-Fierz transformation, thus clearly
exhibiting the interplay between the particle transverse field
and mass correction [10].
Other directions to induce stronger-coupling regimes

can be investigated by our formalism. Couplings can be
enhanced by using systems that display strong light-matter
interactions, like photonic cavities, or polaritonic media,
which support modes of an effectively high index of
refraction. Examples of such polaritonic media are thin
metallic films, graphene, and thin polar dielectrics, each of
which can potentially support optical modes with an
effective mode index of refraction of about 100 [78,79],
thus being a promising paradigm for enhanced light-matter
interaction [47,65,66]. Another interesting option for
achieving free-electron–photon strong coupling is to con-
fine a free electron into a photonic cavity which supports a

broadband resonance phase matched to the electron phase
velocity, allowing the electron to coherently emit and
reabsorb the cavity photons, thus experiencing Rabi oscil-
lations with free electrons.
Additionally, our predictions create new opportunities

for the design of ultrafast Cherenkov probes. The theo-
retical ability to probe short-time dynamics in systems
where multiple particles interact pushes towards experi-
mental advances in pump-probe-like experiments or time-
dependent electron energy-loss spectroscopy [59,80–82].
More specifically, our findings coincide with the recent
development of time-resolved imaging techniques combin-
ing electron optics with state-of-the-art spectroscopy
[83–86]. We believe these theoretical findings are showing
new prospects by which free electrons and other charged
particles can provide a platform for the exploration of
quantum light-matter interactions and strong-coupling
physics.
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APPENDIX A: GENERAL TIME-DEPENDENT
THEORY OF THE QUANTUM

CHERENKOV EFFECT

In this work, we consider the following system: a
single electron propagating at speed v ¼ βc (momentum
p ¼ mv), interacting with a continuum of photons with
momenta q ¼ ℏk. We consider the following Hilbert space:

H ¼ Hel ⊗ Hph; ðA1Þ

whereHel (respectively,Hph) is the Hilbert space describing
the quantum states of a single electron (respectively, the
full Fock space of photons), defined by its momentum jpi
(respectively, by the momentum of every photon
jq; q0; q00;…; qðNÞ;…i).
We consider the usual QED Hamiltonian to describe the

interaction of a spin-1=2 particle with the electromagnetic
field [9]:
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HQED ¼ e
Z

d3xψ̄=Aψ ðA2Þ

¼ e
Z

d3xψ†γμAμψ ; ðA3Þ

where Aμ is the electromagnetic vector potential and
fγμgμ∈f0;1;2;3g are the Dirac matrices. In this work, we
assume that the photon energies are much smaller than the
energy of the moving charge, which enables us to neglect
spin effects and the charge recoil due to photon emission.
Assuming the Coulomb gauge ∇ · A ¼ 0 in Eq. (A3), we
can show that the coupling Hamiltonian is equal to
V ¼ A · v, where v is the electron velocity [47].
In the following, we define α as the fine-structure

constant

α ¼ e2

4πϵ0ℏc
; ðA4Þ

and the coupling Hamiltonian V.
Additionally, only the polarization in the ðp; qÞ plane

contributes to the coupling. These assumptions allow us to
compute the following coupling matrix element:

hp0; qjVjp; 0i ¼ eβ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc2

2Ωϵ0ω̃q

s Z
d3x

e−ip
0·xffiffiffiffi
Ω

p e−iq·x
eip·xffiffiffiffi
Ω

p

ðA5Þ

¼ ev sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2Ωϵ0ω̃q

s
ð2πÞ3
Ω

δð−p0 − qþ pÞ;

ðA6Þ

where jp; 0i is the quantum state of a single electron
propagating with momentum p in the medium, with no
photon present. Here, ω̃q ¼ 1

2
½∂=ð∂ωÞ�ðω2

qεωÞ ¼
c2q½ð∂qÞ=ð∂ωÞ� is the modified normalization factor in
a dispersive medium [87] and Ω the normalization
volume factor.

1. First-order perturbation theory

We first quickly review the result from the application of
Fermi golden rule to this quantum system, to predict the
intensity spectrum of Cherenkov radiation. A similar
derivation can be found in Ref. [87]. We chose similar
notations as in the main text of this article: Ω is the
normalization volume factor, ℏ is the reduced Planck
constant, ω is the photon energy, and (Ei, p) [respectively,
(Ef, p0)] are the (energy, momentum) of the initial (respec-
tively, final) states of the electron.
We compute the decay rate of the initial state, given by

Fermi’s golden rule (FGR):

ΓFGR ¼ 2π

ℏ

Z
d3q

ð2πÞ3=Ω
Z

d3p
ð2πÞ3=Ω

× jhp0; qjVjp; 0ij2δ½ℏω − ðEi − EfÞ�: ðA7Þ

Using Eq. (A6), we get the following:

ΓFGR ¼ 2π

ℏ

Z
d3q

ð2πÞ3=Ω
Z

d3p
ð2πÞ3=Ω

×

����ev sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Ωε0ω̃q

s
ð2πÞ3
Ω

δð−p0 − qþ pÞ
����2

× δ½ℏω − ðEi − EfÞ� ðA8Þ

¼ αβ

Z þ∞

0

dω

�
1 −

�
1

nωβ

�
2
�
Θ
��

1

nωβ

�
2

≤ 1

�
:

ðA9Þ

We then find the original Frank-Tamm formula:

dΓFGR

dω
¼ αβ

�
1 −

�
1

nωβ

�
2
�
Θ
��

1

nωβ

�
2

≤ 1

�
: ðA10Þ

where Θ½.� ¼ 1 if the condition between bracket is
satisfied, Θ½.� ¼ 0 otherwise, and the subscript ω
in nω denotes the frequency dependence of the refractive
index. We also use the notation nε in the future, where
ε ¼ ℏω is the photon energy.

2. Resolvent theory applied to the quantum
Cherenkov effect

A comprehensive introduction to the resolvent theory
applied to atomic systems in QED can be found in
Ref. [10]. The only information we need about the total
Hamiltonian H ¼ H0 þ V (whereH0 is the Hamiltonian of
the unperturbed system) is

(i) the eigenstates and energies of the unperturbed
Hamiltonian H0 and

(ii) the coupling matrix elements of the perturbation
term V, previously used in our derivation of the
Fermi golden rule.

The fundamental equation on the resolvent operator G is
the following:

ðz −H0ÞGðzÞ ¼ 1þ VGðzÞ; ðA11Þ

where z is a complex energy variable and GðzÞ is the
resolvent operator defined in Ref. [10]. It can be understood
as the Fourier transform of the evolution operator UðtÞ.
They can be mapped as follows:

UðtÞ ¼ 1

2πi

I
CþþC−

dzGðzÞe−izt=ℏ; ðA12Þ
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GðzÞ ¼ 1

z −H
; ðA13Þ

with Cþ þ C− a complex contour defined as in Fig. 6.
Assuming the system can emit a maximum of one

photon, we restrict the photon Hilbert space. It follows
that we can get a set of algebraic equations on different
matrix elements of the operator GðzÞ, by multiplying
Eq. (A11) by adequate bra and ket:

ðz − EiÞG0ðzÞ ¼ 1þ
Z

d3q
ð2πÞ3=Ω

d3r
ð2πÞ3=Ω

× Vðp;0Þ;ðr;qÞGðr;qÞ;ðp;0ÞðzÞ; ðA14Þ

ðz − Er − ℏωqÞGðr;qÞ;ðp;0ÞðzÞ

¼
Z

d3p̃
ð2πÞ3=ΩVðr;qÞ;ðp̃;0ÞGðp̃;0Þ;ðp;0ÞðzÞ; ðA15Þ

where, for every operator A, we denote Al;r ¼ hljAjri. The
key to solving the dynamics of the system is to identify the
self-energy function, which appears in various places along
the derivation.
In Ref. [62], Sec. I, we derive another set of fundamental

equations on the resolvent operator, by further extending
the Hilbert space to more-than-one photon emission. Let us
emphasize that the derivation of the self-energy function
(and its regularization) is independent of the approach.
The simplest way to find the self-energy is by inserting

Eq. (A15) in Eq. (A14), and, solving for G0ðzÞ, we get the
following expression (momentum conservation is enforced
by the coupling Hamiltonian Vðr;qÞ;ðp̃;0Þ):

G0ðzþ EiÞ ¼
1

z − fðzÞ ; ðA16Þ

where

fðzÞ ¼ αβ2

2π

Z
∞

0

dε
Z

1

−1
du

nεεð1 − u2Þ
z − εð1 − nεβuÞ

: ðA17Þ

To find UðtÞ, we are interested in values of fðzÞ arbitrarily
close to the real axis, of which we can compute the real and
imaginary parts. To get the imaginary part, we use the fact
that Im½1=ðxþ i0þÞ� ¼ −πδðxÞ:

fðzþ i0�Þ ¼ ΔðzÞ ∓ i
ΓðzÞ
2

; ðA18Þ

ΔðzÞ ¼ αβ

2π

Z
∞

0

dε

�
2ðz − εÞ
nεεβ

�

þ
�
1 −

�
z − ε

nεεβ

�
2
�
log

���� zþ εðnεβ − 1Þ
z − εðnεβ þ 1Þ

����; ðA19Þ

ΓðzÞ
2

¼ αβ

2

Z
∞

0

dε

�
1 −

�
ε − z
εnεβ

�
2
�
Θ
��

ε − z
εnεβ

�
2

≤ 1

�
:

ðA20Þ

We note that Γð0Þ ¼ ΓFGR and that Δð0Þ matches with the
second-order perturbation-theory calculation of the energy
shift of jp; 0i due to the electromagnetic coupling. Thus,
Eqs. (A18)–(A20) represent a nonperturbative generaliza-
tion of Cherenkov radiation and the Lamb (radiative) shift
of an electron in a medium. These equations are key to
developing the results of this paper, and we explore their
consequences.

APPENDIX B: REGULARIZATION OF f ðzÞ
IN FREQUENCY DOMAIN

This Appendix presents the regularization technique we
develop for the purpose of this paper, in order to derive
time-dependent regularized observables of the Cherenkov
effect. We can readily notice that the real part of fðzÞ
diverges and that it is related to the imaginary part of fðzÞ
being unbounded. Splitting the imaginary part of fðzÞ into
two terms, we observe the following:

ΓðzÞ
2

¼ Γ1ðzÞ
2

þ Γ2ðzÞ
2

; ðB1Þ

Γ1ðzÞ
2

¼ αβ

2

Z
nεβ>1

dε

�
1 −

�
ε − z
εnεβ

�
2
�
Θ
��

ε − z
εnεβ

�
2

≤ 1

�
;

ðB2Þ

Γ2ðzÞ
2

¼ αβ

2

Z
nεβ≤1

dε

�
1 −

�
ε − z
εnεβ

�
2
�
Θ
��

ε − z
εnεβ

�
2

≤ 1

�
:

ðB3Þ

We can simplify the integration domain of these two
functions:

Γ1ðzÞ
2

¼
8<
:

αβ
2

R
dε
h
1 −

�
ε−z
εnεβ

	
2
i
Θ
�
ε ≥ z

1−nεβ

	
if z ≥ 0;

αβ
2

R
dε
h
1 −

�
ε−z
εnεβ

	
2
i
Θ
�
ε ≤ z

1þnεβ

	
if z ≤ 0;

ðB4Þ

FIG. 6. Complex integration to Fourier transform the resolvent
into the time domain. Complex contour to Fourier invert GðzÞ to
UðtÞ, in the limit η → 0. The dashed line in the middle represents
the real axis ImðzÞ ¼ 0.
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Γ2ðzÞ
2

¼

αβ

2

R
dε
h
1−
�

ε−z
εnεβ

	
2
i
Θ
�

z
1þnεβ

≤ ε≤ z
1−nεβ

	
if z≥0;

0 if z≤0.

ðB5Þ
(i) When z → þ∞, the Heaviside condition in Γ1ðzÞ

forces ε to be very large. In this limit, all materials
must have nε → 1 (thus, nεβ < 1), and so the
integration domain of Γ1ðzÞ goes to zero. We
observe a similar behavior when z → −∞:

lim
z→�∞

Γ1ðz; nεÞ ¼ 0: ðB6Þ

(ii) Because the Heaviside function and the integration
domain of Γ2 have zero intersection when z < 0,
Γ2ðz; nεÞ is zero for z < 0. However, when z → þ∞,
the integration domain of Γ2ðzÞ is unbounded, and
this integral will diverge:

Γ2ðz ≤ 0; nεÞ ¼ 0; lim
z→þ∞

Γ2ðz; nεÞ ¼ þ∞: ðB7Þ

The fact that ΓðzÞ is unbounded results in a misdefinition
of ΔðzÞ, as real and imaginary parts of the analytical
function fðzÞ are related by Kramers-Kronig relations:

ΔðzÞ ¼ 1

2π
P
Z

Γðz0Þ
z0 − z

dz0: ðB8Þ

A natural way to regularize fðzÞ in the case of the
Cherenkov effect is to subtract the contribution of free
space to the integral nε ≡ 1, as a free electron propagating
in free space at a constant velocity cannot decay and emit
a photon. In the following, we define fðzÞ as the free-space-
regularized function:

fðzÞ ≔ fðzÞ − fðz; nε ≡ 1Þ: ðB9Þ

We find that the regularized self-energy function fðzÞ is
well behaved for realistic refractive indices nε. Let us show
that with an example, given a linear lossless material,
together with the assumption of causality. Under such
conditions, it is possible to prove [88] that the index scales
like approximately 1 − ð1=ε2Þ for large ε (here, ε is still the
photon energy). We thus get nε ¼ 1 − ð1=ε2Þ þOð1=ε2Þ
when ε → þ∞ (it is a direct consequence of the Kramers-
Kronig relations [88]). We can thus expand the integrand of
the function fðzÞ − fðz; nε ≡ 1Þ when ε → þ∞:

ð1 − 1
ε2
Þε

z − ε½1 − ð1 − 1
ε2
Þβu� −

ε

z − εð1 − βuÞ ¼ −
1

ε½z − εð1 − βuÞ�

∼
ε→þ∞

1

ε2
; ðB10Þ

which is integrable when ε → þ∞ (and the integrand is
also integrable when ε → 0þ). Thus, our regularization
technique is naturally backed up by fundamental properties
of the refractive index nε in realistic materials.
We also notice that the renormalized imaginary part

ΓðzÞ=2 is always positive:

ΓðzÞ
2

≔
Z

dε



χðε; nεÞΘ̄

��
u
nε

�
2
�
− χðε; 1ÞΘ̄½u2�

�
;

ðB11Þ

χðε; nεÞ ¼
αβ

2

�
1 −

�
ε − z
εnεβ

�
2
�
; ðB12Þ

u ¼ ε − z
ε

; ðB13Þ

Θ̄ðvÞ ¼ 1½0;1�ðvÞ: ðB14Þ

If u ≤ 1, the integrand is χðε; nεÞ − χðε; 1Þ ≥ 0. If u=nε ≤ 1
but u ≥ 1, the integrand is χðε; nεÞ ≥ 0. Overall, the
integrand is positive; thus, ΓðzÞ ≥ 0 for all z.

APPENDIX C: DERIVATION OF REGULARIZED
TIME-DEPENDENT QUANTUM OBSERVABLES

In Ref. [62], Sec. I, we differentiate between two
methods, relying on two different assumptions on the
Hilbert space in which the quantum state representing
our system evolves. The first method is presented in this
Appendix. However, in both formulations, the resolvent of
the zero-photon state remains the same [given by
Eq. (A16)], which results in the same time-dependent
evolution of U0ðtÞ ¼ hp; 0jUðtÞjp; 0i. We show that, by
Fourier transforming the resolvent matrix element, one can
compute the time evolution of quantum states and relevant
observables. In the following, integral limits will often be
left implicit.

1. Time-domain derivation of the
zero-photon state decay

To solve for the time evolution dynamics of the system,
this section first presents the probability of having no
photon emission as a function of time.
The value of fðzÞ above and below the axis are complex

conjugated; thus,

U0ðtÞ ¼
1

2πi

I
dz e−izt=ℏG0ðzÞ ðC1Þ

¼ 1

π
e−iEit=ℏ

Z
R
dz e−izt=ℏ

ΓðzÞ
2

½z − ΔðzÞ�2 þ ðΓðzÞ
2
Þ2
: ðC2Þ

And the decay probability of the zero-photon state is
given by
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p0ðtÞ ¼ jU0ðtÞj2: ðC3Þ

We readily notice that the real frequency z0 verifying
Δðz0Þ ¼ z0 is of particular importance to describe the decay
of the zero-photon state. For negligible variations of fðzÞ
around z0 (flat-continuum approximation), the integrand
can be approximated by a Lorentzian peaked at z0, Δðz0Þ
being an energy shift, while Γðz0Þ=2 is the decay rate.

U0ðtÞ ≈ exp½−iðEi þ z0Þt=ℏ� · exp
�
−
1

2
Γðz0Þt=ℏ

�
: ðC4Þ

Because our expression of the regularized function fðzÞ
matches with first- and second-order perturbation theory,
the regular quantum prediction is given by

U0ðtÞ≈expf−i½EiþΔð0Þ�t=ℏg · exp
�
−
1

2
Γð0Þt=ℏ

�
: ðC5Þ

When Γðz0Þ ¼ 0, part of the integrand becomes a
Dirac distribution and the zero-photon state only
partially decays to a nonzero value jU0ðþ∞Þj2 ¼
f1=½1 − (dΔðzÞ=dz)jz¼z0 �g2:

U0ðtÞ ¼ e−iEpt=ℏ

 
e−iz0t=ℏ

1 − dΔðzÞ
dz jz¼z0

þ 1

π

Z þ∞

z0þη
dz e−izt=ℏ

ΓðzÞ=2
½z − ΔðzÞ�2 þ ðΓðzÞ

2
Þ2
!
: ðC6Þ

In every case, it is obvious that U0ð0Þ ¼ 1.

2. Estimation of z0 in weakly coupled regime

In practice, we observe that z0 takes a small negative
value for single electrons in optical regimes, which can be
seen through the following expansion for small z, in the
case of an index constant over an energy range Δε:

fðzÞ ≈ αβ2

2π

�
nΔε

Z
duð1 − u2Þ
nβu − 1

− z
Z

dεduð1 − u2Þ
εðnβu − 1Þ2

�
:

ðC7Þ

Using this expansion around z0, we get

2π

αβ2
z0 ≈

2π

αβ2
½fðz0Þ − fðz0; nε ≡ 1Þ� ðC8Þ

≈Δε
Z

duð1 − u2Þ
�

n
nβu − 1

−
1

βu − 1

�
ðC9Þ

−z0
Z

dεdu ð1 − u2Þ
�

n
εðnβu − 1Þ2 −

1

εðβu − 1Þ2
�

ðC10Þ

The second term, proportional to z0, is of the order of 1,
while ½ð2πÞ=ðαβ2Þ� > 850 for a single electron; thus, we
can safely neglect it. We thus get the following scaling law
for z0:

z0 ∼
αβ2

2π
Δε
�Z

duð1 − u2Þ
�

n
nβu − 1

−
1

βu − 1

��
ðC11Þ

∼ −
αβ2

2π
Δε; ðC12Þ

as we can compute the integral term and check that it will
take a negative value on the order of −1 when nβ ≳ 1 in the
optical regime.

3. Spectral angular density of the first emitted
photon (closed Hilbert space formulation)

We insert the expression ofG0ðzÞ into Eq. (A15). We use
the momentum conservation enforced by the coupling
Hamiltonian Vðr;qÞ;ðp̃;0Þ to reduce the number of degrees
of freedom on Gðr;qÞ;ðp;0ÞðzÞ ¼ Gðp−q;qÞ;ðp;0ÞðzÞ. Doing so,
the volume factors cancel out, and we get the following
expression for Gðr;qÞ;ðp;0ÞðzÞ:

Gqðzþ EpÞ ≔ Gðr;qÞ;ðp;0Þðzþ EpÞ

¼ ð−ev sin θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Ωϵ0ω̃q

s
1

z − fðzÞ

×
1

z − ℏωqð1 − βnω cos θÞ
: ðC13Þ

From there, we can readily convert this expression to the
time domain and then get the probability of the first emitted
photon, by integrating over possible photon momenta q:

UqðtÞ ¼
1

2πi

I
dz e−izt=ℏGqðzÞ ðC14Þ

¼ ð−ev sin θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Ωϵ0ω̃q

s
e−iEpt=ℏ

1

π

Z
dz e−izt=ℏ

ΓðzÞ
2

f½z − ΔðzÞ�2 þ ðΓðzÞ
2
Þ2g½z − ℏωqð1 − βnω cos θÞ�

; ðC15Þ
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p1ðtÞ ¼
Z

d3q
ð2πÞ3=Ω jUqðtÞj2 ðC16Þ

¼ αβ2

2π

Z
dεdu εnεð1 − u2Þ

���� 1π
Z

dz e−izt=ℏ
ΓðzÞ
2

f½z − ΔðzÞ�2 þ ðΓðzÞ
2
Þ2g½z − εð1 − βnεuÞ�

����
2

ðC17Þ

¼
Z

dz0
Γðz0Þ
2

���� 1π
Z

dz e−izt=ℏ
ΓðzÞ
2

f½z − ΔðzÞ�2 þ ðΓðzÞ
2
Þ2gðz − z0Þ

����
2

: ðC18Þ

Equation (C18) gives a frequency-domain expression for p1ðtÞ. We can get another expression for p1ðtÞ, by converting the
fundamental Eq. (A15) to the time domain. This conversion is affected through the operation ½1=ð2πiÞ� H dz (still assuming
momentum conservation r ¼ p − q):

−iℏe−iðErþℏωqÞt=ℏ d
dt

ðUqeiðErþℏωqÞt=ℏÞ ¼ ðev sin θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Ωε0ω̃q

s
U0ðtÞ; ðC19Þ

which gives us, using the expression of ΓðzÞ,

p1ðtÞ ¼
1

ℏ2

Z
dz

ΓðzÞ
2

����
Z

t

0

dt0e−izt0=ℏeiEpt0=ℏU0ðt0Þ
����2: ðC20Þ

In both expressions, we notice that the expression of the imaginary part of fðzÞ intervenes. We here notice that replacing
ΓðzÞ by its regularized form ΓðzÞ ≔ ΓðzÞ − Γðz; nε ≡ 1Þ is of paramount importance to ensure that the total probability in
the Hilbertian space is conserved and equal to 1:

p0ðtÞ þ p1ðtÞ ¼ 1 ∀ t: ðC21Þ

p1ðtÞ regularization also results in the regularization of the spectral angular density f½∂2p1ðtÞ�=∂ε∂ug using the
expression derived from the frequency domain:

∂2p1ðε; u; tÞ
∂ε∂u ≔

αβ2

2π
εnεð1 − u2Þ

���� 1π
Z

dz e−izt=ℏ
ΓðzÞ
2

f½z − ΔðzÞ�2 þ ðΓðzÞ
2
Þ2g½z − εð1 − βnεuÞ�

����
2

−
αβ2

2π
εð1 − u2Þ

���� 1π
Z

dz e−izt=ℏ
ΓðzÞ
2

f½z − ΔðzÞ�2 þ ðΓðzÞ
2
Þ2g½z − εð1 − βuÞ�

����
2

: ðC22Þ

And similarly, from the time-domain expression [Eq. (C20)], we get

∂2p1ðtÞ
∂ε∂u ≔

1

ℏ2

αβ2

2π
nεεð1 − u2Þ

����
Z

t

0

dt0eiεð1−nεβuÞt0=ℏe−iEpt0=ℏU0ðt0Þ
����2 − 1

ℏ2

αβ2

2π
εð1 − u2Þ

����
Z

t

0

dt0eiεð1−βuÞt0=ℏe−iEpt0=ℏU0ðt0Þ
����2:

ðC23Þ

For convenience, we use the latter expression derived from the time domain in our numerical simulations. In the flat-
continuum approximation, we can readily notice that the spectral angular density is enhanced for ðε; uÞ satisfying

εð1 − nεβuÞ ¼ z0 ⇔
ε − z0
nεβu

¼ 1; ðC24Þ

which coincides with the conventional Cherenkov relation in the case z0 ¼ 0.
This new dispersion relation also allows the existence of backward Cherenkov radiation in this simple setting when

z0 > 0 for ε < z0 [see, for instance, Fig. 2(d)].
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APPENDIX D: ADDITIONAL INFORMATION

Additional information can be found in Supplemental
Material [62], including a nested Hilbert space formulation,
which can take into account several photons, influence of
the permittivity function on our predictions, and the
generalization of our regularization method to vac-
uum QED.
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