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Free-electron radiation such as Cerenkov1, Smith–Purcell2 and 
transition radiation3,4 can be greatly affected by structured 
optical environments, as has been demonstrated in a variety 
of polaritonic5,6, photonic-crystal7 and metamaterial8–10 sys-
tems. However, the amount of radiation that can ultimately 
be extracted from free electrons near an arbitrary material 
structure has remained elusive. Here we derive a fundamental 
upper limit to the spontaneous photon emission and energy 
loss of free electrons, regardless of geometry, which illumi-
nates the effects of material properties and electron veloci-
ties. We obtain experimental evidence for our theory with 
quantitative measurements of Smith–Purcell radiation. Our 
framework allows us to make two predictions. One is a new 
regime of radiation operation—at subwavelength separa-
tions, slower (non-relativistic) electrons can achieve stron-
ger radiation than fast (relativistic) electrons. The other is 
a divergence of the emission probability in the limit of loss-
less materials. We further reveal that such divergences can 
be approached by coupling free electrons to photonic bound 
states in the continuum11–13. Our findings suggest that compact 
and efficient free-electron radiation sources from microwaves 
to the soft X-ray regime may be achievable without requiring 
ultrahigh accelerating voltages.

The Smith–Purcell effect epitomizes the potential of free-elec-
tron radiation. Consider an electron at velocity β =  v/c traversing a 
structure with periodicity a; it generates far-field radiation at wave-
length λ and polar angle θ, dictated by2
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where m is the integer diffraction order. The absence of a mini-
mum velocity in equation (1) offers prospects for threshold-free 
and spectrally tunable light sources, spanning from microwave and 
terahertz14–16, across visible17–19, and towards X-ray20 frequencies. In 
stark contrast to the simple momentum-conservation determina-
tion of wavelength and angle, there is no unified yet simple analytical 
equation for the radiation intensity. Previous theories offer explicit 
solutions only under strong assumptions (for example, assuming 
perfect conductors or employing effective medium descriptions) 
or for simple, symmetric geometries21–23. Consequently, heavily 
numerical strategies are often an unavoidable resort24,25. In general, 
the inherent complexity of the interactions between electrons and 

photonic media have prevented a more general understanding of 
how pronounced spontaneous electron radiation can ultimately be 
for arbitrary structures, and consequently, how to design the maxi-
mum enhancement for free-electron light-emitting devices.

We begin our analysis by considering an electron (charge − e) 
of constant velocity vx̂ traversing a generic scatterer (plasmonic or 
dielectric, finite or extended) of arbitrary size and material com-
position, as in Fig. 1a. The free current density of the electron,  
J(r, t) =  − ̂xevδ(y)δ(z)δ(x −  vt), generates a frequency-dependent 
(e−iωt convention) incident field26
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written in cylindrical coordinates (x, ρ, ψ); here, Kn is the modified 
Bessel function of the second kind, kv =  ω/v and = −ρk k kv

2 2  = 
k/βγ (k =  ω/c, free-space wavevector; γ β= ∕ −1 1 2 , Lorentz fac-
tor). Hence, the photon emission and energy loss of free electrons 
can be treated as a scattering problem: the electromagnetic fields 
Finc =  (Einc, Z0Hinc)T (for free-space impedance Z0) are incident on a  
photonic medium with material susceptibility χ  (a 6 ×  6 tensor for a gen-
eral medium), causing both absorption and far-field scattering—that is, 
photon emission—that together comprise electron energy loss (Fig. 1a).

As recently shown in refs 27–29, for a generic electromagnetic scatter-
ing problem, passivity—the condition that polarization currents do 
no net work—constrains the maximum optical response from a given 
incident field. Consider three power quantities derived from Finc and 
the total field F within the scatterer volume V: the total power lost by 
the electron, Ploss = ∫− ∕ ⋅ VJ E(1 2)Re d*

V
 = ∫ω χϵ † VF F( /2)Im d

V0 inc ,  
the power absorbed by the medium, Pabs = ∫ω χϵ ∕ † VF F( 2)Im d

V0 ,  
and their difference, the power radiated to the far field, 
Prad =  Ploss −  Pabs. Treating F as an independent variable, the total loss 
Ploss is a linear function of F, whereas the fraction that is dissipated 
is a quadratic function of F. Passivity requires non-negative radi-
ated power, represented by the inequality Pabs <  Ploss, which in this 
framework is therefore a convex constraint on any response func-
tion. Constrained maximization (see Supplementary Section 1) of 
the energy-loss and photon-emission power quantities, Ploss and Prad, 
directly yields the limits
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where τ ∈  {rad, loss} and ξτ accounts for a variable radiative efficiency 
η (defined as the ratio of radiative to total energy loss): ξloss =  1 and 
ξrad =  η(1 −  η) ≤  1/4. Hereafter, we consider isotropic and non-mag-
netic materials (and thus a scalar susceptibility χ), but the general-
izations to anisotropic and/or magnetic media are straightforward.

Combining equations (2) and (3) yields a general limit on the 
loss or emission spectral probabilities Γτ(ω) =  Pτ(ω)/ħω:
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where α is the fine-structure constant. Equation (4) imposes, with-
out solving Maxwell’s equations, a maximum rate of photon gen-
eration based on the electron velocity β (through kv and κρ), the 
material composition χ(r) and the volume V.

The limit in equation (4) can be further simplified by removing 
the shape dependence of V, since the integrand is positive and is 
thus bounded above by the same integral for any enclosing struc-
ture. A scatterer separated from the electron by a minimum distance 
d can be enclosed within a larger concentric hollow cylinder sector 
of inner radius d and outer radius ∞ . For such a sector (height L 
and opening azimuthal angle ψ ∈ (0, 2π ]), equation (4) can be fur-
ther simplified, leading to a general closed-form shape-independent 
limit (see Supplementary Section 2) that highlights the pivotal role 
of the impact parameter κρd:

Γ ω
αξ χ

χ
ψ

β
κ κ κ≤

π
| |

τ
τ

ρ ρ ρc
L

d K d K d( )
2 Im

[( ) ( ) ( )] (5a)
2

2 0 1

β

κ κ

κ
∝

≪

π ≫
ρ ρ

κ
ρ

− ρ








d d

d
1 ln(1 / ) for 1,

e / 2 for 1
(5b)d2 2

The limits of equations (4), (5a) and (5b) are completely gen-
eral; they set the maximum photon emission and energy loss of an 
electron beam coupled to an arbitrary photonic environment in  
either the non-retarded or retarded regimes, given only the beam 
properties and material composition. The key factors that deter-
mine maximal radiation are identified: intrinsic material loss (rep-
resented by Imχ), electron velocity β and impact parameter κρd. The 
metric χ χ| | /Im2  reflects the influence of the material choice, which 
depends sensitively on the radiation wavelength (Fig. 1b). The 
electron velocity β also appears implicitly in the impact parameter 
κρd =  kd/βγ, showing that the relevant length scale is set by the rela-
tivistic velocity of the electron. The impact parameter κρd reflects 
the influence of the Lorentz contraction d/γ; a well-known feature 
of both electron radiation and acceleration20,26,30.

A surprising feature of the limits in equations (4), (5a) and 
(5b) is their prediction for optimal electron velocities. As shown 
in Fig. 1c, when electrons are in the far field of the structure 
κ ≫ρd( 1) , stronger photon emission and energy loss are achieved 

by faster electrons—a well-known result. On the contrary, if elec-
trons are in the near field κ ≪ρd( 1) , slower electrons are optimal.  
This contrasting behaviour is evident in the asymptotics of equa-
tion (5b), where the 1/β2 or κ− ρe d2  dependence is dominant at 
short or large separations. Physically, the optimal velocities are 
determined by the incident-field properties (equation (2)): slow 
electrons generate stronger near-field amplitudes although they 
are more evanescent (Supplementary Section 2). There has been 
recent interest in using low-energy electrons for Cherenkov10 
and Smith–Purcell31 radiation; our prediction that they can be 
optimal at subwavelength interaction distances underscores the  
substantial technological potential of non-relativistic free-electron  
radiation sources.

The tightness of the limit (equations (4), (5a) and (5b)) is dem-
onstrated by comparison with full-wave numerical calculations  
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Fig. 1 | Theoretical framework and predictions. a, The interaction between a free electron and an obstacle defined by a susceptibility tensor (r,ω) within 
a volume V, located at a distance d, generates electron energy loss into radiation and absorption. b, ∣ ∣χ χ∕Im2  constrains the maximum material response 
to the optical excitations of free electrons over different spectral ranges for representative materials (from ref. 40). At the X-ray and extreme ultraviolet 
(EUV) regime, Si is optimal near the technologically relevant 13.5 nm (dashed circle). Contrary to the image charge intuition for the optical excitations 
of electrons, low-loss dielectrics (such as Si in the visible and infrared regimes) can be superior to metals. c, Shape-independent upper limit showing 
superiority of slow or fast electrons at small or large separations; the material  affects only the overall scaling. d,e, Numerical simulations (circles) 
compared to analytical upper limits (lines; equation (5a) for d and equation (6) for e, respectively) for the radiation (blue) and energy loss (red) of 
electrons penetrating the centre of an annular bowtie antenna (d) and passing above a grating (e).
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(see Methods) in Fig. 1d,e. Two scenarios are considered: in Fig. 1d, 
an electron traverses the centre of an annular Au bowtie antenna 
and undergoes antenna-enabled transition radiation (η ≈  0.07%),  
while, in Fig. 1e, an electron traverses a Au grating, undergoing 
Smith–Purcell radiation (η ≈  0.9%). In both cases, the numerical 
results closely trail the upper limit at the considered wavelengths, 
showing that the limits can be approached or even attained with 
modest effort.

Next, we specialize in the canonical Smith–Purcell set-up illus-
trated in Fig. 1e inset. This set-up warrants a particularly close study, 
given its prominent historical and practical role in free-electron 
radiation. Aside from the shape-independent limit (equations (5a) 
and (5b)), we can find a sharper limit (in per unit length for peri-
odic structure) specifically for Smith–Purcell radiation using rect-
angular gratings of filling factor Λ (see Supplementary Section 3)

Γ ω αξ χ
χ

Λ β≤
π

| |τ τ G
x c

kd
d ( )

d 2 Im
( , ) (6)

2

The function G β kd( , ) is an azimuthal integral (see Supplementary 
Section 3) over the Meijer G-function G1,3

3,0 (ref. 32) that arises in the 
radial integration of the modified Bessel functions Kn. We emphasize 
that equation (6) is a specific case of equation (4) for grating structures 
without any approximations and thus can be readily generalized to 
multi-material scenarios (see Supplementary equation (37)).

The grating limit (equation (6)) exhibits the same asymptotics 
as equations (5a) and (5b), thereby reinforcing the optimal-velocity 
predictions of Fig. 1c. The (β, kd) dependence of G (see Fig. 2a) 
shows that slow (fast) electrons maximize Smith–Purcell radiation 
in the small (large) separation regime. We verify the limit predic-
tions by comparison with numerical simulations: at small separa-
tions (Fig. 2b), radiation and energy loss peak at velocity β ≈  0.15, 
consistent with the limit maximum; at large separations (Fig. 2c), 
both the limit and the numerical results grow monotonically with β.

The derived upper limit also applies to Cherenkov and transition 
radiation, as well as bulk loss in electron energy-loss spectroscopy. 
For these scenarios where electrons enter material bulk, a subtlety 
arises for the field divergence along the electron’s trajectory (ρ =  0 in 
equation (2)) within a potentially lossy medium. This divergence, 
however, can be regularized by introducing natural, system-specific 
momentum cutoffs26, which then directly permits the application of 
our theory (see Supplementary Section 6). Meanwhile, there exist 
additional competing interaction processes (for example, electrons 
colliding with individual atoms). However, they typically occur at 
much smaller length scales.

We perform quantitative experimental measurement of Smith–
Purcell radiation to directly probe the upper limit. Figure 3a shows 
our experimental set-up (see Methods and Supplementary Section 7  
for details). A one-dimensional (1D) 50%-filling-factor grating 
(Au-covered single-crystalline Si)—the quintessential Smith–
Purcell set-up—is chosen as a sample, and shown by scanning 
electron microscope (SEM) images in Fig. 3b,c. Free electrons pass 
above and impinge onto the sample at a grazing angle of 1.5° under 
10 to 20 kV acceleration voltages.

Figure 3d depicts our measurements of first-order m =  1 Smith–
Purcell radiation appearing at wavelengths between 500 and 750 nm. 
In quantitative agreement with equation (1) evaluated at the normal 
emission angle (solid lines), the measured radiation spectra (dots) 
blueshift with increasing electron velocity. Notably, we experimen-
tally obtain the absolute intensity of the collected radiation via a 
calibration measurement (see Supplementary Section 7). The upper 
limits (equation (4)) for the surface-normal emission wavelengths 
(λ =  a/β) are evaluated at the centre of the interaction region (height 
≈ 140 nm (kd ≈  1.5), varying with beam energy), and is shown 
with shading in Fig. 3d to account for the thickness uncertainty  

(± 1.5 nm). The envelope spanned by the measurement peaks fol-
lows the upper-limit lineshape across the visible spectrum: both the 
theoretical limit and the measured intensities peak near 550 nm and 
decrease in a commensurate manner for other wavelengths. This 
lineshape originates from two competing factors. At shorter wave-
lengths, the material factor χ χ| | /Im2  decreases significantly for both 
Au and Si (see Fig. 1c), which accounts for the reduced radiation 
intensity. At longer wavelengths, the major constraint becomes the 
less efficient interaction between the electrons and the structure, as 
the electron-beam diameters increase for the reduced brightness 
of the electron gun (tungsten) at lower acceleration voltages (see 
Supplementary Section 7). These pieces of experimental evidence 
for the upper limit are at kd ≈  1.5 (estimated from a geometrical ray-
tracing model; see Supplementary Section 7), where fast electrons 
are still preferred (Fig. 2a). To further confirm our theory, we also 
conduct a near-infrared Smith–Purcell experiment (Supplementary 
Section 8) at kd ≈  1, where the envelope lineshape of the emission 
spectra again follows our prediction. We also obtain complementary 
supporting evidence (extracted from a recent work10) for our slow-
electron-efficient prediction (see Supplementary Section 9).
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Fig. 2 | Optimal electron velocities for maximal Smith–Purcell radiation. 
a, Behaviour of G β kd( , ) , equation (6), whose maxima indicate separation-
dependent optimal electron velocities. Here G  is normalized between 0 and 
1 for each separation. The limit yields sharply contrasting predictions: slow 
electrons are optimal in the near field ( ≪kd 1) and fast electrons are optimal 
in the far field ( ≫kd 1). b,c, Energy loss (red) and radiation (blue) rates 
(circles: full-wave simulations; lines: grating limit, equation (6); shading: 
shape-independent limit, equations (5a) and (5b)) at two representative 
near/far-field separation distances (white dashed slices in a).
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Finally, we turn our attention to an ostensible peculiarity of 
the limits: equation (4) evidently diverges for lossless materi-
als (Imχ →  0), seemingly providing little insight. On the contrary, 
this divergence suggests the existence of a mechanism capable of 
strongly enhancing Smith–Purcell radiation. Indeed, by exploiting 
high-Q resonances near bound states in the continuum (BICs)13 in 
photonic crystal slabs, we find that Smith–Purcell radiation can be 
enhanced by orders of magnitude, when specific frequency-, phase- 
and polarization-matching conditions are met.

A 1D silicon (χ =  11.25)-on-insulator (SiO2, χ =  1.07) grating 
interacting with a sheet electron beam illustrates the core concep-
tual idea most clearly. The transverse electric (TE) (Ex, Hy, Ez) band 
structure (lowest two bands labelled TE0 and TE1), matched polar-
ization for a sheet electron beam (supplementary equation S41b)), is 
depicted in Fig. 4b along the Γ − X direction. Folded electron wave-
vectors, kv =  ω/v, are overlaid for two distinct velocities (blue and 
green). Strong electron–photon interactions are possible when the 
electron and photon dispersions intersect: for instance, kv and the 
TE0 band intersect (grey circles) below the air light cone (light yel-
low shading). However, these intersections are largely impractical: 
the TE0 band is evanescent in the air region, precluding free-space 
radiation. Still, analogous ideas, employing similar partially guided 
modes, such as spoof plasmons33, have been explored for generating 
electron-enabled guided waves34,35.

To overcome this deficiency, we theoretically propose a new 
mechanism for enhanced Smith–Purcell radiation: coupling of 
electrons with BICs13. The latter have the extreme quality factors 
of guided modes but are, crucially, embedded in the radiation con-
tinuum, guaranteeing any resulting Smith–Purcell radiation into 

the far field. By choosing appropriate velocities β =  a/mλ (m being 
any integer; λ being the BIC wavelength) such that the electron line 
(blue or green) intersects the TE1 mode at the BIC (red square in 
Fig. 4b), the strong enhancements of a guided mode can be achieved 
in tandem with the radiative coupling of a continuum resonance.  
In Fig. 4c, the incident fields of electrons and the field profile of the 
BIC indicate their large modal overlaps. The BIC field profile shows 
complete confinement without radiation, unlike conventional mul-
tipolar radiation modes (see Supplementary Fig. 9). The Q values of 
the resonances are also provided near a symmetry-protected BIC13 
at the Γ  point. Figure 4d,e demonstrates the velocity tunability of 
BIC-enhanced radiation—as the phase matching approaches the 
BIC, a divergent radiation rate is achieved.

The BIC-enhancement mechanism is entirely accordant with 
our upper limits. Practically, silicon has non-zero loss across the 
visible and near-infrared wavelengths. For example, for a period 
of a =  676 nm, the optimally enhanced radiation wavelength is  
≈ 1,050 nm, at which χSi ≈  11.25 +  0.001i (ref. 36). For an electron–
structure separation of 300 nm, we theoretically show in Fig. 4f the 
strong radiation enhancements (> 3 orders of magnitude) attain-
able by BIC-enhanced coupling. The upper limit (shaded region; 
2D analogue of equation (4); see Supplementary Section 10)  
attains extremely large values due to the minute material loss 

χ χ∣ ∣ ∕ ≈( Im 10 )2 5 ; nevertheless, BIC-enhanced coupling enables 
the radiation intensity to closely approach this limit at several reso-
nant velocities. In the presence of an absorptive channel, the maxi-
mum enhancement occurs at a small offset from the BIC where the 
Q-matching condition (see Supplementary Section 11) is satisfied 
(that is, equal absorptive and radiative rates of the resonances).
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Fig. 3 | Experimental probing of the upper limit. a, Experimental set-up. OBJ, objective (numerical aperture of 0.3); BS, beamsplitter; SP, spectrometer; 
CAM, camera. b,c, SEM images of the structure in top view (b) and cross-sectional view (c). d, Quantitative measurement of Smith–Purcell radiation 
(inset: camera image of the radiation). The solid lines mark the theoretical radiation wavelengths at the normal angle (equation (1)). The envelope (peak 
outline) of the measured spectra (dots) follows the theoretical upper limit (shaded to account for fabrication tolerance; calculated at each wavelength with 
the corresponding electron velocity for surface-normal radiation).
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In closing, we have theoretically derived and experimentally 
probed a universal upper limit to the energy loss and photon 
emission from free electrons. The limit depends crucially on 
the impact parameter κρd, but not on any other detail of the 
geometry. Hence, our limit applies even to the most complex 
metamaterials and metasurfaces, given only their constituents. 
Surprisingly, in the near field, slow electrons promise stronger 
radiation than relativistic ones. The limit predicts a divergent 
radiation rate as the material loss rate goes to zero, and we show 
that BIC resonances enable such staggering enhancements. 
This is relevant for the generation of coherent Smith–Purcell 
radiation14,34,35. The long lifetime, spectral selectivity and large 
field enhancement near a BIC can strongly bunch electrons, 
allowing them to radiate coherently at the same desired fre-
quency, potentially enabling low-threshold Smith–Purcell free-
electron lasers. The combination of this mechanism and the 
optimal velocity prediction reveals prospects of low-voltage  
yet high-power free-electron radiation sources. In addition, our 
findings demonstrate a simple guiding principle to maximize 
the signal-to-noise ratio for electron energy-loss spectroscopy 
through an optimal choice of electron velocity, enabling improved  
spectral resolution.

The predicted slow-electron-efficient regime still calls for direct 
experimental validation. We suggest that field-emitter-integrated 
free-electron devices (for example, ref. 10) are ideal to confirm the 
prediction due to the achievable small electron–structure separa-
tion and high electron beam quality at relatively large currents. 
Alternatively, the microwave or terahertz frequencies could be 
suitable spectral ranges for verifying the slow-electron-efficient 
regime, where the subwavelength separation requirement is  
more achievable.

The upper limit demonstrated here is in the spontaneous emis-
sion regime for constant-velocity electrons, and can be extended to 
the stimulated regime by suitable reformulation. Stronger electron–
photon interactions can change electron velocity by a non-negli-
gible amount that alters the radiation. If necessary, this correction 
can be perturbatively incorporated. In the case of external optical 
pumping37, the upper limit can be revised by redefining the inci-
dent field as the summation of the electron incident field and the 
external optical field. From a quantum mechanical perspective, this 
treatment corresponds to stimulated emission from free electrons, 
which multiplies the limit by the number of photons in that radia-
tion mode. This treatment could also potentially translate our limit 
into a fundamental limit for particle acceleration38,39, which is the 
time-reversal of free-electron energy loss and which typically incor-
porates intense laser pumping. In the multi-electron scenario, the 
radiation upper limit will be obtained in the case of perfect bunch-
ing, where all electrons radiate in phase. In this case, our single-
electron limit should be multiplied by the number of electrons to 
correct for the superradiant nature of such coherent radiation.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0180-2
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Fig. 4 | Strong enhancement of Smith–Purcell radiation via high-Q resonances near a photonic BIC. a, A schematic drawing of a silicon-on-insulator 
grating (1D photonic crystal slab: periodic in x and infinite in y). b, The calculated TE band structure (solid black lines) in the Γ − X direction. The area 
shaded in light and dark yellow indicates the light cone of air and silica, respectively. The electron lines (blue for velocity v, and green for v/2) can phase 
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Methods
Fourier transform convention. Throughout the paper, we adopt the following 
Fourier transform conventions

∫ ∫ω ω ω≜ ≜
π

ω ω−f f t t f t f( ) ( )e d , ( ) 1
2

( )e d (7)i t i t

∫ ∫≜ ≜
π

− · ·g f g gk r r r k k( ) ( )e d , ( ) 1
(2 )

( )e d (8)i ik r k r
3

Numerical methods. The photonic band structure in Fig. 4b is calculated via 
the eigenfrequency calculation in COMSOL Multiphysics. Numerical radiation 
intensities (Figs. 1d,e, 2b,c, 3d and 4d–f) are obtained via the frequency-domain 
calculation in the radiofrequency module in COMSOL Multiphysics. A surface 
(for 3D problems) or line (for 2D problems) integral on the Poynting vector is 
calculated to extract the radiation intensity at each frequency.

Experimental set-up and sample fabrication. Our experimental set-up comprises 
a conventional SEM with the sample mounted perpendicular to the stage.  
A microscope objective was placed on the SEM stage to collect and image the light 
emission from the surface. The collected light was then sent through a series of 

free-space optical elements, enabling simultaneous measurement of the spectrum 
and of the spatial radiation pattern.

The SEM used for the experiment was a JEOL JSM-6010LA. Its energy 
spread at the gun exit was in the range 1.5 to 2.5 eV for the range of acceleration 
voltages considered in this paper. The SEM was operated in spot mode, which we 
controlled precisely to align the beam so that it passes tangentially to the surface 
near the desired area of the sample. A Nikon TU Plan Fluor 10x objective with a 
numerical aperture of 0.30 was used to collect light from the area of interest. The 
monochrome image of the radiation was taken using a Hamamatsu CCD (charge-
coupled device). The spectrometer used was an Action SP-2360-2300i with a low-
noise Princeton Instruments Pixis 400 CCD.

A 1D grating (Au-covered single-crystalline Si: periodicity, 140 nm; filling 
factor, 50%; patterned Si thickness, 53 ±  1.5 nm; Au thickness 44 ±  1.5 nm) was used 
as the sample in our experiment. The original nanopatterned linear silicon stamp 
was obtained from LightSmyth Technologies and coated using an electron beam 
evaporator with a 2 nm Ti adhesion layer and 40 nm of Au at 10−7 torr. The sample 
was mounted inside the SEM chamber to enable the alignment of free electrons 
to pass in close proximity to the stamps. The emitted light was coupled out of the 
SEM chamber to a spectrometer, while a camera was used to image the surface of 
the sample.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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