
 
 

www.sciencemag.org/content/353/6296/263/suppl/DC1 
 
 
 

 
Supplementary Materials for 

 

Shrinking light to allow forbidden transitions on the atomic scale 

Nicholas Rivera,* Ido Kaminer, Bo Zhen, John D. Joannopoulos, Marin Soljačić 
 

 
*Corresponding author. Email: nrivera@mit.edu 
 

 
 

Published 15 July 2016, Science 353, 263 (2016) 
DOI:  10.1126/science.aaf6308 

 
 
This PDF file includes: 
Supplementary Text 

Figs. S1 to S5 

References and Notes 



Supplementary Materials for Shrinking Light to Allow
Forbidden Transitions on the Atomic Scale

Nicholas Rivera1∗
†
, Ido Kaminer1∗, Bo Zhen2, John D. Joannopoulos1

& Marin Soljačić1
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1 Introduction

In this appendix, we outline the use of quantum electrodynamics (QED) for computing decay

rates of atomic excited states due to the vacuum macroscopic electromagnetic fields associated

with 2D conductors. We consider atom-field interactions governed by the non-relativistic Pauli-

Schrodinger Hamiltonian H:

H = Ha +Hem +Hint

Ha =

(∑
i

p2
i

2me

− e2

4πε0ri

)
+He−e +HSO

Hem =
∑

j=x,y,z

∫
dr

∫
dω ~ω

(
f †j (r, ω)fj(r, ω) +

1

2

)
Hint =

∑
i

e

2m
(pi ·A(ri) + A(ri) · pi) +

e2

2m
A2(ri) +

e~
2m

σi ·B(ri), (S1)

whereHe−e is the electron-electron interaction,HSO is the spin-orbit coupling,Ha is the atomic

Hamiltonian, Hint is the atom-field interaction, A is the vector potential operator, and B is the

magnetic field operator. The operators (and notation) appearing in the field energy, given by

Hem, will be explained in Sec. II. The minimal-coupling interaction Hamiltonian presented

above is related to the more well-known dipole interaction Hamiltonian: −d · E + self-energy,

by a unitary transformation in the long-wavelength (dipole) approximation (48).

Because the atoms that we consider are interacting with dissipative media, the canonical

quantization based on the mode expansion of the electromagnetic field is not valid. Instead we
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must use the formalism of macroscopic QED. For more information about macroscopic QED,

see Refs. (52, 53). We also discuss conditions for which a canonical quantization scheme

based on the expansion of lossless modes is a suitable approximation for the decay rate of an

excited atom. We choose a fully quantum mechanical approach rather than the well known

phenomenological approach based on the LDOS not only because it takes into account the

orbital and spin degrees of freedom of the emitter, but also because it provides an elegant way

to compute rates of transitions with varying multipolarity. Moreover, for higher-order processes

in QED, a quantum approach becomes clearly necessary.

2 Macroscopic QED of 2D Conductors

Choosing a gauge in which the scalar potential is identically zero, the vector potential operator

is given by:

Ai(r) =

√
~
πε0

∫
dω′

ω′

c2

∫
dr′
√

Im ε(r′, ω′)Gij(r, r
′;ω′)f̂j(r

′, ω′) + H.c., (S2)

where Gij is the dyadic Green function of the Maxwell equations, satisfying ∇ × ∇ ×Gi −

ε(r, ω)ω
2

c2
Gi = δ(r − r′)êi. Physically it represents the field at point r produced by a time-

harmonic dipole at r′ oriented along direction i. f̂ (†)
j (r, ω) annihilates (creates) an excitation of

frequency ω, at position r, and oriented along direction j. It satisfies bosonic commutation rela-

tions, namely:
[
f̂i(r, ω), f̂ †j (r′, ω′)

]
= δijδ(ω− ω′)δ(r− r′). When applying the Fermi Golden

Rule, the initial state is |e, 0〉, while the final states are of the form |g,xωk〉 ≡ f̂ †k(x, ω)|g, 0〉
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(52). Using these final states in addition to the commutation relations, we get that 1

Γ =
2π

~2

e2~
πε0m2

ec
2

∫
dx
∑
k

ω2
0

c2
Im ε(x)

∣∣∣〈e|Gikpi(r,x, ω0)|g〉
∣∣∣2.

Expanding the matrix element yields:

Γ =
2π

~2

e2~
πε0m2

ec
2

∫ ∫
drdr′ ψ∗e(r)ψe(r

′) (Im Gij(r, r
′, ω0)) (piψg(r))(p

∗
jψ
∗
g(r
′)),

where we have used the identity: ω2
0

c2

∫
dx Im ε(x, ω0)(G(r,x, ω0)G†(r′,x, ω0))ij = Im Gij(r, r

′, ω0)

(52). To proceed, we will substitute in the reflected part of the Green function for the system in

Figure 1. We assume a real and non-dispersive permittivity εr throughout (for simplicity), al-

though this formalism can easily accommodate substrate dispersion and losses. Experimentally,

complications arising from the substrate can be alleviated by interfacing graphene with hBN or

having free-standing graphene. An exact expression for the Green function can be written in

terms of the reflection and transmission coefficients of the interface between the conductor and

air (53,54). In the air region (z > 0):

Gij(r, r
′, ω0) =

i

2

1

(2π)2

∫
dq (Cs

ij + Cp
ij)e

iq·ρ+ik⊥ze−iq·ρ
′+ik⊥z

′
, (S3)

where Cs and Cp are tensors describing the s- and p-polarized parts of the reflected fields. Note

that we only need the z > 0 solution because the atomic wavefunctions, for the atom-surface

separations chosen, decay very rapidly (on the scale of angstroms, as opposed to the decay on

the scale of nanometers of the plasmon field), and thus are negligible at the surface.

Choosing the atomic wavefunctions to be real (which can always be done in the cases we

consider) and defining Mi =
∫
dr ψge

iq·ρ+ik⊥zpiψe, and M−
i =

∫
dr ψge

−iq·ρ+ik⊥zp∗iψe, we
1Note that we have neglected the ∇ ·A term. This term is (in our gauge), only nonzero at surface of the 2D

conductor (and is proportional to a delta function). For the atom-surface separations we chose, the contribution
from this term is negligible because the atomic wavefunctions decay very rapidly away from the atomic center and
thus provide an extremely weak contribution at the surface. By the way, this is the same reason that ”symmetry”
effects are irrelevant here, i.e., that the change from 3D translational symmetry (in free-space) to 2D translational
symmetry doesn’t completely change selection rules. The fact that the atomic wavefunctions only effectively see a
plane wave (with complex wave-vector) implies that the atom is interacting with modes formally identical to those
in free-space (albeit with a much larger wavevector).
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arrive at a generalized Fermi Golden Rule:

Γ =
e2

~ε0m2
ec

2
Re
[

1

(2π)2

∫
dqMi(C

s
ij + Cp

ij)M
−
j

]
. (S4)

The part of the decay rate coming from surface plasmons comes from the p-polarized (transverse

magnetic) waves, and accordingly, we will only work with that part of the reflected Green

function.

Performing a rotation: {x, y, z} → {q, q⊥, z}, Cp can be expressed as

−c2 rpq

ω2
0

 k⊥
q

0 1

0 0 0
−1 0 − q

k⊥

 = −c2 rpq

ω2
0

 k⊥
q

0
−1

⊗ (1 0 q
k⊥

)
≡ −2ic2 rpq

ω2
0

ε̂i(q)ε̂j(q)∗,

where the polarization vectors are defined by: ε̂(q) ≡ q̂+iẑ√
2

. We make our first approximation

here: the electrostatic limit. Namely, that the main contribution to this integral comes from

q � ω
c

(i.e., the confinement factor of the emitted plasmons is much larger than 1). This is

an excellent approximation in all of our calculations. To lowest order in this approximation:

k⊥ = iq, and M−
i = M∗

i . Thus,

Γ =
2e2

~ε0m2
eω

2
0

Im
[

1

(2π)2

∫
dq q|〈g|(ε̂(q) · p)eiq·ρ−qz|e〉|2rp

]
.

The Fresnel reflection coefficient in the electrostatic limit is given by
(εr−1)i− σq

ω0ε0

(εr+1)i− σq
ω0ε0

(27). Per-

forming a non-dimensionalization on q with respect to q0: q = q0u, where q0 ≡ (εr+1)ε0ω0

σI(ω0)
, we

arrive at a relatively simple final result:

Γ =
4αω0

m2
ec

2(εr + 1)
η3

0

∫
dθdu u2e−2η0kz0u|〈g|(ε̂(q)·p)eiq·ρ−q(z−z0)|e〉|2

(
1

π

σRu
σI

(σRu
σI

)2 + (1− u)2

)
,

(S5)

where η0 is the resonant confinement factor of the plasmon λ0
λpl

, σR(σI) are the real (imaginary)

parts of the (local) conductivity at the resonant frequency, and α = e2

4πε0~c is the fine-structure

constant. In the lossless limit (σR
σI
→ 0), the lineshape in parentheses becomes δ(u − 1). The
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decay rate in the lossless limit can be understood as the decay rate into surface plasmons (SPs).

Note that when a plasmon mode exists (σI > 0), the integrand in Equation (S5) approximately

takes the form of a Lorentzian centered around the wavevector of the mode at frequency ω0.

The effective quality factor is σI/σR, which is a function of ω in the regime where the response

is well-described as spatially local. Strictly speaking, the effective quality factor depends on

both frequency and wavevector.

Note that in the lossless limit, we arrive at the same expression for the decay rate as

would be obtained had we written A based on a canonical quantization scheme. Namely:

A =
∑

n

√
~

2ε0ωn

(
Fnan + F∗na

†
n

)
, where the Fn are the orthonormal modes of the Maxwell

equations. In this case, the modes F(q) are given by:
√

2κ
1+εr

eiq·ρ−κz
(

κq̂+iqẑ√
κ2+q2

)
. In the electro-

static limit, κ ≈ q, reproducing the results that we arrive at using the Green function formalism.

This provides a cross-check on the results we shall derive below, which take the effects of losses

into consideration.

3 First Order Processes

In this section, we consider processes that can be described at first-order in perturbation theory:

direct emission into a single excitation of the medium-assisted macroscopic electromagnetic

field. In particular, we examine electric multipolar and magnetic multipolar (spin-flip) transi-

tions. We provide a detailed discussion of how losses modify the decay rates computed from

canonical quantization based on modal expansion and show the regimes in which non-radiative

or radiative decay dominates. By radiative decay, we do not mean decay into far-field photons,

but rather into propagating plasmons. This is in contrast to the non-radiative decay into the

other lossy channels of the 2D conductor, which, for example, is the mechanism responsible for

the strong decay rate enhancement of emitters adsorbed onto a conducting surface.
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Matrix elements match polynomial approximations 
E2 ~ x2

E3 ~ x4

E4 ~ x6

E1 ~ x0

E5 ~ x8

Matrix elements match polynomial approximations 

E2 ~ x2

E1 ~ x0

Figure S1: Comparison of matrix elements computed exactly (solid) with polynomial approx-
imations (dashed) for different transitions in the hydrogen 3 ↔ 4 transition series (A) and the
5 ↔ 6 transition series (B) as a function of η0 for λ0 = 1.88 µm and 7.45 µm (respectively).
These curves overlap completely in this range.

3.1 Electric Multipole Transitions

The calculations below are presented for the case for which the initial and final wavefunctions

have their z-projected angular momentum to be zero (i.e; mi = mf = 0). In this case, the angu-

lar integral is simply 2π, and we can pick q to be in a particular direction, called x. Frequently,

it is the case that in the matrix element in Equation (S5) there is one main contributing term

from the series expansion of the exponential. That is to say:∣∣∣〈e|eη0k(−ix−(z−z0))ê∗θ · ∇|g〉
∣∣∣2 = C`η

2(n−1)
0 u2(n−1) (S6)

where n = 1 for dipole (E1) transitions, n = 2 for quadrupole (E2) transitions, and so on. In

Figure S1, we demonstrate the validity of (S6), where we plot exact matrix elements involving

the full exponential (solid lines) and their respective polynomial approximations (dashed lines)

for E1-E2 transitions in the hydrogen (4s↔ 3{p, d}) transition series (A) and E1-E5 transitions

in the hydrogen 6{p, d, f, g, h} → 5s transition series (B) as a function of confinement η0.

These transition series are different than that considered in the main text (4s↔ 6{p, d, f, g, h}).
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We choose a different transition series here in order to give the reader a more complete picture

of how confinement, separation, vacuum wavelength, and losses affect the decay rates of excited

emitters.

When the approximation in Equation (S6) is satisfied, the radiative rate of emission (into

surface plasmons) scales with η0 as:

ΓEnr = η
3+2(n−1)
0 × 4παω0

(mec)2(εr + 1)
e−2η0kz0Cn. (S7)

and the ratio of total decay rate to decay rate into SPs is:

ΓEnTOT
ΓEnR

=

∫
du u2+2(n−1)e−2η0kz0(u−1)

(
1

π

σRu
σI

(σRu
σI

)2 + (1− u)2

)
(S8)

To gain insight into the typical values of decay rates given by Equations (S7) and (S8), it is

useful to write the momentum matrix element in units of ~
a0

, where a0 is some characteristic

size of the emitter. When considering atomic systems, it is reasonable to take a0 to be the Bohr

radius, in which case Cl is dimensionless and the resulting factor
(

~
meca0

)2

is identified as α2.

Our formulas summarized at the end of the SM reflect this choice of units.

3.1.1 Effect of Losses

In Figure S2, we plot this ratio for five Hydrogen atom transitions: 5s ↔ 6{p, d, f, g, h}.

For each transition, we plot the ratio as a function of on-resonance confinement factor η0 at

atom-surface separations of 5 nm, 10 nm, and 15 nm. Note that only the dipole case is not

plotted on a logarithmic scale - indicating that losses only weakly modify decay rates of dipole

emitters, even for η0 as low as 20. At very low plasmon confinement, the emission into lossy

channels dominates the emission into plasmons. As can be seen in Figure S2, emission into

lossy channels far exceeds emission into SPs for higher-order angular momentum transitions.

For a Hydrogen atom 5 nm above the a surface undergoing an E5 transition (6h→ 5s), the lossy

channel emission can exceed the SP emission by nearly 12 orders of magnitude at η0 = 20,
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leading to a total Purcell factor of roughly 1026. This leads to a total decay lifetime on the order

of 10 ns, which is typical of many dipole emitters in free space.

At higher values of confinement (η0 > 150) and atom-surface separation (z0 > 10 nm),

the SP and lossy channel decay rates are within the same order of magnitude. While the non-

radiative enhancement decreases precipitously at these confinements and separations, the more

rapidly increasing enhancement of emission into propagating SPs ensures that the total decay

rate is increasing as a function of η0. To give the reader further intuition for the phenomena

discussed in this section, we present in Figure S3 the integrand of Equation (S8) for different

values of confinement and atom-surface separation. We place a high-wavevector cutoff in the

integrand at a wavelength of 5 nm due to the fact that the use of macroscopic electrodynamics

becomes begins to come into question at these distances. The choice of 5 nm is somewhat

arbitrary, but we choose it because averaging microscopic fields over a 5 nm × 5 nm area

corresponds to averaging over several hundred unit cells. 5 nm is a somewhat conservative

cutoff, and yet it doesn’t affect the integrand in Figure S3 significantly.

From Figure S3, it is clear that for higher multipole transitions, the integrand peaks at values

of u far greater than u = 1, which is the value associated with the surface plasmon pole (27).

When this happens, we can approximate the lineshape function in the integrand of Equation

(S8) by 1
πQu

. The decay rate (which is in this limit purely nonradiative) is therefore

ΓEnnr = η0 ×
4(2n− 1)!αω0

(mec)2(εr + 1)Q
(2kz0)−(2+2(n−1))Cn. (S9)

We can thus see that the decay rate is a purely increasing function of η0. In fact, once non-

radiative decay becomes unimportant, the decay rate transitions from increasing with η0 to

increasing as η3+2(n−1)
0 . We conclude therefore that higher confinement is always beneficial to

achieving increasing decay rates.

We conclude this section by noting that for the parameters that we investigated, emission
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into SPs tends to be the dominant contribution to the decay rate for dipole transitions. Thus,

for investigations into two-plasmon spontaneous emission mediated by dipole transitions and

singlet-triplet transitions, one is often justified in using lossless QED based on mode expansion.

That said, we will consider this process with losses included.

3.2 Spin Flip Magnetic Multipole (Mn) Transitions

In this section, we derive the rate at which an excited state flips its spin due to vacuum fluctua-

tions in the magnetic field. We look at both radiative and non-radiative decays into 2D plasmons

as a function of their confinement factor. The part of the Hamiltonian governing this behavior

is e~
2me

σ ·B (48). The magnetic field operator is given by

Bi(r) = (∇×A)i =

√
~
πε0

∫
dω′

ω′

c2

∫
dr′
√

Im ε(r′, ω′)εilm∂lGmj(r, r
′;ω′)f̂j(r

′, ω′) + H.c.,

(S10)

where εilm is the Levi-Civita symbol, and ∂l is a shorthand for ∂
∂xl

. Applying the Fermi Golden

Rule in a manner similar to that in Section II, the decay rate is given by:

Γ =
2π

~2

e2~3

4πε0m2
ec

2
σegi σ

∗eg
r

∫ ∫
drdr′ ψ∗g(r)ψg(r) [Im εilmεrst∂l∂

′
sGmt(r, r

′, ω0)]ψe(r)ψ
∗
e(r
′),

where σegk denotes the k-th component of the overlap of the spin part of the excited and ground

states, and ∂′ denotes partial derivatives with respect to r′. Simplifying further, the decay rate

is given by:

Γ = − e2~
4ε0m2

ec
2
Re
[

1

(2π)2

∫
dqMiM

−
r εilmεrstklk

−
s (Cs

mt + Cp
mt)

]
,

where: k = (q, k⊥), k− = (−q, k⊥), M = σeg
∫
drψge

iq·ρ+ik⊥zψe and M− = σeg∗ ∫ drψge−iq·ρ+ik⊥zψe.

Once again, we consider only the p-polarized contribution in the electrostatic limit. This further

simplifies to

Γ =
αω0

2(εr + 1)

(
~ω0

mec2

)2

η0

∫
dθdu e−2η0kz0u|〈g|σ⊥e−iq·ρ−q(z−z0)|e〉|2

(
1

π

σRu
σI

(σRu
σI

)2 + (1− u)2

)
,

(S11)
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For a transition with a change in orbital angular momentum of (n − 1) (an Mn transition), the

matrix elements in Equation (S21) can be expressed as Cnη
2(n−1)
0 u2(n−1) (the Cn here is not the

same as that discussed in the section on electric multipole transitions). When the change in the

z-projected orbital angular momentum is zero, the radiative and non-radiative decay rates are

respectively:

ΓMn
r = η

1+2(n−1)
0 × παω0

(εr + 1)

(
~ω0

mec2

)2

e−2η0kz0Cn (S12)

and

ΓMnr = η0
(2n− 3)!αω0

Q(εr + 1)

(
~ω0

mec2

)2

(2kz0)−2(n−1)Cn (S13)

Note that Equation (S13) does not hold for n = 1 (magnetic dipole transition). In this case, the

formula for the rate is more complicated, and we do not derive it here. We note that the radiative

result can again be derived from a canonical quantization scheme, where the B operator is

obtained by taking the curl of the A operator mentioned at the end of Sec. II (without the

electrostatic approximation).

4 Second Order Processes - Intercombination Transitions and
Two Plasmon Emission

4.1 Electric Dipole (Intercombination) Mechanism

The rate of the singlet-triplet transition is generally limited by the weakness of the spin-orbit

interaction. However, in atoms and molecules near 2D conductors, the rate of the singlet-triplet

transition can be greatly enhanced due to the strong enhancement of electric-dipole transitions.

For instructional purposes, we consider here a situation in which the ground state is a singlet

with no nearly degenerate triplet states, and the excited state is a triplet state, which has nearly

degenerate singlet states nearby. In this case, the transition rate from an triplet state |T1, 0〉 to a
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singlet state |S0,q〉 under the influence of a perturbation HSO + (d1 ·E1 + d2 ·E2) is given by

Γ =
2π

~2

∑
q

∣∣∣∑
n

〈S0,q|(d1 · E1(r1) + d2 · E2(r2))|Sn, 0〉〈Sn, 0|HSO|T1, 0〉
ET1 − ESn

∣∣∣2δ(ω(q)− ω0)

(S14)

Taking the approximation of one main contributing intermediate singlet state, |S ′〉, the spin-

orbit and electromagnetic effects separate as follows:

Γ =
2π

~2

∑
q

|〈S0,q|(d1 · E1(r1) + d2 · E2(r2))|S ′, 0〉|2
∣∣∣〈Sn, 0|HSO|T1, 0〉

ET1 − ES′

∣∣∣2δ(ω(q)− ω0).

In Helium-like atoms (and many other atoms and molecules), the spatial parts of singlet and

triplet states are well-described by (resp.) antisymmetrized or symmetrized combinations of

two single-particle states. Taking two single-particle states |α〉 and |β〉, we can write spatial

wavefunctions such as: |α〉|β〉 + |β〉|α〉 and |α〉|γ〉 + |γ〉|α〉 to describe spin-singlets |S0〉 and

|S ′〉 (As an example, take α = 2S and β = 2S, γ = 2P . This example corresponds to a

two states in the Helium atom separated by a wavelength of 2.06 µm (31)). When considering

the Purcell enhancement associated with placing an excited spin-triplet or spin-singlet near

plasmons, the same spin-orbit coupling factor shows up as that which shows up in the free-

space decay rate. Therefore, the spin-orbit coupling does not show up in the Purcell factor,

which we show is given by:

F S→T
p = η3

0 ×
3πf

(εr + 1)
e−2η0kz0 ×

∫
du u2e−2η0kz0(u−1)

(
1

π

σRu
σI

(σRu
σI

)2 + (1− u)2

)
, (S15)

where f = 1
2

if the dipole is oriented parallel to the surface of the conductor, and f = 1 if the

dipole is oriented perpendicular to the surface. In the lossless limit, the integral over u is one,

giving a result in agreement with the well-known η3
0 decay law for dipolar emitters discussed in

the main text.
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4.2 Two Plasmon Spontaneous Emission

Finally, we consider situations in which an emitter above a 2D conductor can emit two exci-

tations of the electromagnetic field, a process that is second-order in the perturbation theory.

We consider an initial state |e, 0〉 and a final state |g, rωk, r′ω′k〉 ≡ f̂ †k(r, ω)f̂ †k′(r
′, ω′)|g, 0〉.

The atom is coupled to the field through a perturbation, V . Fermi’s Golden Rule for this decay

reads:

Γ =
2π

~2

1

2

∫
drdr′

∫
dωdω′

∑
k,k′

∣∣∣∑
i1

〈g, rωk, r′ω′k′|V |i1〉〈i1|V |e, 0〉
Ee − Ei1 + i0+

∣∣∣2δ(ω0−ω−ω′), (S16)

where |i1〉 are intermediate states containing both the atom and field degrees of freedom. The

sum is understood to be a sum over discrete degrees of freedom and an integral over continuous

ones. The factor of 1/2 comes from the fact that when we sum over all {rωk, r′ω′k} pairs, each

pair of excitations appears twice.

For simplicity, we work in the dipole approximation, in which V = −d ·E(r0), where r0 is

the atom position which we define as (0, 0, z0), using the coordinate system in Figure 1 of the

main text. The electric-field operator is:

E(r0) = i

√
~
πε0

∫
dω

ω2

c2

∫
dr′
√

Im ε(r′)G(r0, r
′;ω) · f̂(r′, ω) + H.c.. (S17)

Using the above electric-field operator and the dipole interaction Hamiltonian, the decay rate

into two lossy excitations is given by the general formula:

32πα2

c2

ω0∫
0

dω ω2(ω0 − ω)2Im Gri(r0, r0, ω)Im Gsj(r0, r0, ω0 − ω)×

∑
m,n

(
xgnj x

ne
i

ωe − ωn − ω
+

xgni x
ne
j

ωe − ωn − (ω0 − ω)

)(
xgms xmer

ωe − ωm − ω
+

xgmr xmes
ωe − ωm − (ω0 − ω)

)∗
,

(S18)

where xabi ≡ 〈a|êi · r|b〉. We point out here that in the hydrogen atom, the energy denominators

diverge at as ω → 0, leading to an apparent infrared divergence in the two-photon decay rate.
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This divergence stems from the degeneracy between the initial state and some intermediate state

and is this ultimately regulated by the Lamb shifts, which split the aforementioned degeneracy.

Because the Lamb shifts only very weakly modify the eigenfunctions of the coulomb potential,

the only effect of the Lamb shift is to renormalize the hydrogen energy levels. This is equivalent

to putting a low-frequency cutoff in the integral at ωLS ≡ ELS
~ , where ELS is the Lamb shift

between the initial state and the once degenerate intermediate state. Below this cutoff, the

integrand drops sharply. The Lamb shifts are taken from (31). In non-Hydrogenic atom, this

issue in general does not arise.

As discussed in Section II, Im Gij can be expressed in terms of the imaginary part of the

reflectivity Im rp and polarization vectors, ε̂(θ) = q̂+iẑ√
2
,where θ is the angle between q̂ and the

x-axis of q-space. Also as discussed in Sec. II, the imaginary part of the reflectivity can be

expressed as Im rp(u, ω) = 2π
εr+1

(
1
π

u/Q(ω)
(1−u)2+(u/Q(ω))2

)
, where u = q/q0, with q0(ω) = (εr+1)ωε0

Im σ(ω)
,

just as in Sec. II. The lossless limit of the two-excitation spontaneous emission rate per unit

frequency (also known as the differential decay rate) is found to be:

dΓ

dy
=

16πω0α
2k4

(εr + 1)2
× [y(1− y)η(y)η(1− y)]3 e−2kz0[yη(y)+(1−y)η(1−y)]×〈∣∣∣∑

n

(rgn · ε̂(θ))(rne · ε̂(θ′))

ye − yn − y
+

(rgn · ε̂(θ))(rne · ε̂(θ′))

ye − yn − (1− y)

∣∣∣2〉
θ,θ′
, (S19)

where k = ω0

c
and Γ ≡

1∫
0

dy dΓ
dy

. In writing the previous equation, we have performed the non-

dimensionalizations: η(y) = cq(y)
ω(y)

, and y = ω
ω0

2 3 A relatively simple case of this expression

occurs when the initial and final states are s states. The intermediate states are then of the form

|i1〉 = |npj〉 for j = x, y, z. In the electrostatic limit, ε̂(θ) = cos(θ)x̂+sin(θ)ŷ+iẑ√
2

. The angular

average is 3/8 and the differential decay rate can be expressed in terms of matrix elements of z,
2Although the angular integrals could have already been performed, we express our answer in terms of polar-

ization vectors to make the result take the form of that which would be obtained through canonical quantization
using the (lossless) field operators presented at the end of Section 2.

3Another useful non-dimensionalization for atomic systems, that allows for quick estimation of the decay rate
is r ≡ a0x.
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zgn ≡ 〈g|z|n〉, as:

6πω0α
2k4

(εr + 1)2
× [y(1− y)η(y)η(1− y)]3e−2kz0[yη(y)+(1−y)η(1−y)]×∣∣∣∑

n

zgnzne

(
1

ye − yn + y − 1
+

1

ye − yn − y

) ∣∣∣2.
The two-photon differential emission rate in free-space, by comparison is (51,55)

4

3π
α2k4y3(1− y)3

∣∣∣∑
n

zgnzne

(
1

ye − yn + y − 1
+

1

ye − yn − y

) ∣∣∣2.
Therefore, the enhancement factor per unit frequency in free-space is

dΓ/dy
∣∣∣
pl

dΓ/dy
∣∣∣
fs

=
9π2

2(εr + 1)2
η3(y)η3(1− y)e−2kz0[yη(y)+(1−y)η(1−y)]. (S20)

Equation (S20) can be re-expressed in terms of the Purcell factor, Fp(ω), for the single plasmon

emission of a dipole polarized perpendicular to the 2D conductor as

dΓ/dy
∣∣∣
pl

dΓ/dy
∣∣∣
fs

=
1

2
Fp(y)Fp(1− y). (S21)

Equation (S21) also holds when plasmon losses are taken into account, as we show below.

4.2.1 Effect of Dispersion on Lossless Rates

In the main text, we use the Drude dispersion in order to evaluate the two-plasmon spontaneous

emission rate. In the Drude model, the dispersion relation implies that η(y) = ωc
β2 = ω0c

β2 y, where

β is a constant determined by the plasma frequency and thickness of the metal. We define the

characteristic squeezing η0 = ω0c
2β2 . The factor of 2 in the definition of η0 is natural because most

of the emission comes from frequencies near ω = ω0

2
. It thus follows that the differential decay

rate is:

dΓ

dy

∣∣∣
Drude

= 384
πω0

(εr + 1)2
α2k4η6

0y
6(1−y)6e−4η0kz0(y2+(1−y)2)

∣∣∣∑
n

zgnzne

(
1

ye − yn + y − 1
+

1

ye − yn − y

) ∣∣∣2
(S22)
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In many cases, the 2D plasmon dispersion is approximately linear with wavevector, i.e.,

η(y) = η0, where η0 is some constant squeezing that can be as high as 360 (in Beryllium for

example). Values of 240 have been observed in graphene (11–13). Therefore, the differential

decay rate is (in the low loss limit):

dΓ

dy

∣∣∣
const η

=
6πω0

(εr + 1)2
α2k4η6

0y
3(1−y)3e−4η0kz0

∣∣∣∑
n

zgnzne

(
1

ye − yn + y − 1
+

1

ye − yn − y

) ∣∣∣2
(S23)

4.2.2 The Effect of Losses on Two Plasmon Spontaneous Emission

In this section, we estimate the effect of losses on the two-excitation spontaneous emission rate

and show that the lossless decay rates computed in the main text are generally not significantly

altered by losses. For simplicity, we consider transitions between S states, although our calcu-

lations can straightforwardly be generalized to other transitions. To compute emission of two

excitations in the presence of dissipation, the starting point is Equation (S18). The decay rate

can be expressed as

6πα2c2

(εr + 1)2

ω0∫
0

dω ω2(ω0 − ω)2I(ω)I(ω0 − ω)
∣∣∣∑

n

zgnzne

(
1

ye − yn + y − 1
+

1

ye − yn − y

) ∣∣∣2,
(S24)

in which I(ω) is a shorthand for

q3
0(ω)e−2q0(ω)z0

∫
du u2e−2qz0(u−1)

(
1

π

u/Q(ω)

(1− u)2 + (u/Q(ω))2

)
≡ q3

0(ω)e−2q0(ω)z0I(u, ω).

(S25)

In the lossless limit, the integral evaluates to 1, reproducing the lossless result, as expected. It

can thus be seen that the ratio of the total differential decay rate to the lossless differential decay
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rate is

dΓTOT/dy

dΓr/dy
=

[∫
du u2e−2q0(y)z0(u−1)

(
1

π

u/Q(y)

(1− u)2 + (u/Q(y))2

)]
×[∫

du u2e−2q0(1−y)z0(u−1)

(
1

π

u/Q(1− y)

(1− u)2 + (u/Q(1− y))2

)]
(S26)

Equation (S26), in combination with Equation (S8) demonstrate that for S → S transitions,

the differential decay rate enhancement is still 1
2
Fp(y)Fp(1 − y). In Fig. S4, we compare the

differential decay rates with losses to those without losses for atom-surface separations of 0.5,

1, 5, and 15 nm. The transition under consideration is the 4s→ 3s transition in Hydrogen, just

as in the main text. The model assumed to hold through the entire decay spectrum is the Drude

model, in which Q(ω) = ωτ =⇒ Q(y) = (ω0τ)y, where τ is the frequency-independent

relaxation time. Although a more realistic model for the conductivity can be adopted, we choose

the Drude model for instructional purposes. In the simulations resulting in Fig. S4, we chose

the confinement factor at y = 0.5 to be 150, just as in the main text. We also chose the quality

factor at y = 0.5 to be 20. We can see that for distances between 5 and 15 nm, the decay is

mostly through plasmons. However, for distances below 1 nm, we can see two phenomena.

The first being that the dominant mode of decay is through the loss mechanisms that determine

the relaxation time. The second is that the peak of the emission is no longer at y = 0.5. From

these last two observations, we arrive at two conclusions. The first is that at short atom-surface

separations, entangled lossy excitations (such as particle-hole excitations or phonons) can be

produced at high rates. The second is that the spectral shape of an emitter can be significantly

altered by the presence of losses.

To conclude our discussion of losses and two-plasmon emission, we present analytical (up to

atomic matrix elements) expressions for the differential decay rate when non-radiative decay is

a dominant effect. What can be computed exactly and analytically is the ratio of this differential

decay rate to the free-space differential decay rate. At short distances, or long wavelengths, i.e;

17



q(ω0)z0 � 1, and for Q � 1 (in practice, Q = 3 can already be high enough), each of the

integrals in Equation (S24) becomes

1

πQ(ω)
e2q0(ω)z0(2q0(ω)z0)−2,

where ω = ω0y or ω0(1− y). When this happens, the differential decay rate becomes:

dΓ

dy

∣∣∣
Lossy

=
3ω0α

2

8π(εr + 1)2

1

z4
0

×
[
y(1− y)η(y)η(1− y)

Q(y)Q(1− y)

]
×∣∣∣∑

n

zgnzne

(
1

ye − yn + y − 1
+

1

ye − yn − y

) ∣∣∣2.
(S27)

When Q � 1, one of the two integrals in Equation (S24) becomes linear in Q. The enhance-

ment of the differential decay rate is given by the previous equation divided by the free-space

differential emission rate and is independent of atomic parameters. The analysis of this section

can be generalized to arbitrary dispersion relations such as Drude or linear.

Finally, a word of caution about the use of these estimates: when z0 approaches the emitter

size, the dimensionless decay rate approaches 1, indicating the necessity of including nonlocal-

ity and potentially the breakdown of perturbative quantum electrodynamics. Therefore, these

formulas should not be used in those short-distance cases, but rather should be used to estimate

the distance at which nonlocality is important and at which perturbation theory breaks down.

5 Experimental Signatures of Forbidden Transitions

We briefly discuss a potential scheme by which to observe forbidden transitions (like the ones

described in this paper) through radiative cascade in a four-level system like that illustrated

in Figure S5. The assumptions regarding the levels are noted in Figure S5. Electrons in this

emitter are excited to level 1 by usual means (electrically or through a far-field photon). If a

forbidden transition does not occur, the possible transitions may be 1→ 0 or 1→ 3. If a forbid-

den transition from 1→ 2 occurs, then a far-field photon emission can occur from 2→ 3 if this
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transition is at a high enough frequency to be insignificantly enhanced by plasmons, or if it is in

the cutoff region of graphene. The observation of a photon at this frequency is already a quali-

tative signal of forbidden transitions taking place. Combined with quantitative understanding of

the intensity of far-field photon emission from 2→ 3 as a function of atom-surface separation

and confinement factor (which can be electrostatically controlled in graphene), the exact type of

forbidden-transition can be inferred. This is because, as we have shown in the text, every type

of forbidden transition has different dependences on confinement and atom-surface separation.

This finding points to a way of reshaping the far-field spectrum of emitter, even without out-

coupling any excitations. Therefore, even with very high losses which may seem overcomeable,

an interesting application of these highly confined plasmons emerges naturally.

6 Summary of Results

In this section, we summarize our results for the various decay rates in purely radiative and

purely non-radiative limits.For electric (En) transitions, the radiative decay rate is:

ΓEnr = η
3+2(n−1)
0 × 4πα3ω0

(εr + 1)
e−2η0kz0Cn.

The corresponding non-radiative decay rate is:

ΓEnnr = η0 ×
4(2n− 1)!α3ω0

(εr + 1)Q
(2kz0)−(2+2(n−1))Cn.

For spin flip transitions, the radiative decay rate is:

ΓMn
r = η

1+2(n−1)
0 × παω0

(εr + 1)

(
~ω0

mec2

)2

e−2η0kz0Cn.

The corresponding non-radiative decay rate is (for n 6= 1):

ΓMn
nr = η0 × (2n− 3)!

αω0

Q(εr + 1)

(
~ω0

mec2

)2

(2kz0)−2(n−1)Cn.
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For intercombination transitions in the single-contributing intermediate state approximation, the

Purcell factor in the lossless limit is

F S↔T
p =

3πf

εr + 1
η3

0e
−2η0kz0

For two-plasmon spontaneous emission, the second order differential purcell-factor within the

dipole approximation is:

dΓ/dy
∣∣∣
pl

dΓ/dy
∣∣∣
fs

= η6
0 × 72π2(e−4η0kz0)(y − y2)3e8η0kz0y(1−y),

which can be recast into the remarkably simple form:

dΓ/dy
∣∣∣
pl

dΓ/dy
∣∣∣
fs

=
1

2
Fp(y)Fp(1− y),

which holds even when losses are present (although then the decay is not purely into plasmons).
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Figure S2: Ratio of total decay rate to decay rate into plasmons - Multipolarity and Con-
finement Dependence: plotted as a function of on-resonance confinement factor η0 at different
atom-surface separations for E(1-5) transitions in the Hydrogen 6↔5 transition series. The
minimum confinement factor considered in this figure is 20.
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Emission into loss channels dominates

Center of peak no longer at y=0.5

z0 = 0.5 nm

z0 = 5 nm z0 = 15 nm

z0 = 1 nm

η(0.5) = 150, Q(0.5) = 20
for all plots

Figure S4: Effect of Losses on Two Plasmon Spontaneous Emission: Differential decay
rate dΓ/dy plotted as a function of y for lossless (dashed blue) and lossy (solid orange) 2D
conductors. A Drude model to describe Graphene is assumed. The lossless version of these
differential decay plots are plotted for the same transition as Fig. 4b in the main text.
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Figure S5: Detecting forbidden transitions indirectly via radiative cascade. Schematic four-
level system by which the presence of forbidden transitions can be inferred. It is assumed that
0→ 1 is allowed, 1→ 2 is forbidden, and 2→ 3 is allowed and occurs non-negligibly through
far-field photon emission.
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