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1 Exact, closed-form vector solutions of electromagnetic pulses 

The objective of this section is to give a more detailed discussion surrounding Eq. (4) of the 

main text. For ease of reference, and to make the Supplementary Information self-contained, we 

reproduce our solution here. Our solution, at cylindrical coordinates (r, z) and time t, can be 

expressed by the scalar function   
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where  aRzskf i
~

ii1 0  ,    2/122 ic
~

atrR   is the complex length, c00 k is the 

central angular frequency of the pulse, and c is the speed of light in the linear, homogeneous, time-

invariant and isotropic medium (not necessarily free space). Parameters a and s control the focal 

spot size and pulse length of the electromagnetic pulse. In the limit of a weakly-focused, many-

cycle pulse, a approximates the Rayleigh range of the beam, i.e., 22
00wka  , where 0w  is the 

beam waist radius (second irradiance moment) at the focal plane, and  2ln422
0s , where τ is 

the intensity full-width-at-half-maximum (FWHM) pulse duration.  

In Section A1, we can show that   0,,,,,,,1Re  sasatzrf (details in Section A1), 

guaranteeing a complete absence of singularities in (S1.1) and thus a physically valid description 

at every point in space-time.  

Equation (S1.1) exactly solves the electromagnetic wave equation (with azimuthal symmetry) 

 0
11

2

2

22

2























tczr
r

rr


.  (S1.2) 



3 
 

As discussed in the main text, vector solutions of electromagnetic fields E and H are readily 

obtained by treating the scalar solution (S1.1) as a component of Hertz vectors eΠ  and mΠ , and 

applying the equations [35] 
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where   and   are the medium’s permittivity and permeability respectively.  

For instance, the radially-polarized TM10 (Fig. S1.1) and azimuthally-polarized TE10 modes 

are obtained by setting ẑe Π , 0m Π , and 0e Π , ẑm Π  respectively. Linearly-polarized 

fundamental modes (Fig. S1.2) are obtained by setting x̂e Π , 0m Π , or 0e Π , ŷm Π , 

or some linear combination thereof. A spectral analysis, discussed in Section 3, also confirms that 

(S1.1) contains neither backward-propagating components nor DC (i.e., zero-frequency) 

components. In fact, (S1.1) has non-zero components only in the positive ω-kz quadrant of the 

spectral domain, making our solutions the first finite-energy closed-form solutions of Maxwell’s 

equations that is free of approximations. This is exciting because all existing closed-form models 

for ultrashort, non-paraxial pulses to-date suffer from drawbacks like the existence of points of 

divergence (where the field goes to infinity, which is non-physical) and backward propagating 

components [36-44]. 
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Figure S1.1. Fields of a linearly-polarized vectorial temporally diffracting (TD) electromagnetic 
pulse in the standard regime (a-c) and in the Abruptly Focusing Needle regime (d-f). In both cases, 
the total pulse energy is 1 mJ and the central wavelength is 0.8 μm. The field profile is shown in 
the y = 0 plane. 
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Figure S1.2. Fields of a radially-polarized (TM10) vectorial temporally diffracting (TD) 
electromagnetic pulse in the standard regime (a-c) and in the Abruptly Focusing Needle regime 
(d-f). In both cases, the total pulse energy is 1 mJ and the central wavelength is 0.8 μm. The field 
profile shown is azimuthally symmetric. 
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2 Derivation and properties of the electromagnetic wavepacket 

In this section, we present the main steps of our derivation for (S1.1), which is also Eq. (4) of 

the main text. For a single frequency ω = kc, the electromagnetic wave equation 
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reduces to the Helmholtz equation 
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where    tzyx  iexp,,,'' 0   solves Eq. (S2.1). Equation (S2.2) governs the beam 

evolution along the z direction. By the Fourier transform limit (Eq. (1) in the main text), if the 

intensity |ψ|2 is highly localized in x, then a large spread in kx must result. By Eq. (S2.2), this large 

spread causes the localization in x to be rapidly destroyed with propagation distance z.  

To formulate a solution where the Fourier transform limit leads instead to a tradeoff between 

spatial narrowness and temporal duration – thus lifting the restriction on the spatial shape of the 

high intensity region at the focus – it stands to reason to reverse the roles of z and t (or of kz and ω 

in the spectral domain). In other words, we begin with a wave comprising a single wavevector 

component kz that evolves according to 
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where    zkktyx zz0 iexp,,,  . 

A general solution to (S1.2) takes the form 
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where 0  satisfies the equation 
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which is the azimuthally symmetric version of (S2.3). A solution to (S2.5) is 
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where    2/122 ic
~

atrR  and 0k  is a normalizing constant. By choosing the branch of the 

square root in R
~

 such that   0
~

Re R , we can show that   0,,,,
~

Re  aatraR (details in 

Section A1). In addition, we will build our solution only from components where 0z k . Under 

these conditions, one can see that (S2.6) contains absolutely no singularities and is a physically 

valid solution at all points in space-time.   

Equation (S2.4) is a valid solution of (S1.2) for an arbitrary spectral function  zkF . To obtain 

(S1.1), we choose a Poisson distribution that peaks at 0z kk      
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where   and   are the Gamma and Heaviside functions respectively. The choice of a Poisson 

distribution is partly motivated by the fact that – coupled with the free space photon dispersion 

relation which requires kz = 0 when ω = 0 – it leads to a solution that contains no DC (i.e. zero-

frequency) components and therefore describes a purely propagating pulse regardless of the 

specified pulse duration. We then evaluate (S2.4) to obtain 
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Equation (S2.8) is a fully analytical solution to (S1.2) containing neither singularities nor 

backward-propagating components. Taking a partial derivative in time of (S2.8) takes us directly 

to (S1.1): 
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Fig. S2.1 summarizes the salient differences between the TD wavepacket and the typical 

Gaussian beam solution obtained from the Helmholtz equation (S2.2), in the paraxial regime. 
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Figure S2.1. An alternative paradigm of formulating electromagnetic pulses, such that the Fourier 
transform limit does not restrict the shape of the high intensity region at the focus. In the paraxial 
regime, TD electromagnetic wavepackets are composed of multiple frequencies (a), instead of 
multiple wavevector component kz’s (b). To obtain finite-energy pulses in the space-time domain, 
we have to integrate (a) and (b) over multiple kz and ω respectively. These pulsed versions are 
shown in (c) and (d), where a spatiotemporal pulse envelope (green) travels along a spatial beam 
envelope (blue dashes) with the carrier illustrated in red. The overall spatiotemporal pulse 
envelope is given by multiplying the green and blue portions. The pulse in (d) is associated with a 
spatial red-shift at the focus as a result of the Gouy phase shift, resulting in a subluminal group 
velocity near the focus. On the other hand, the TD electromagnetic wavepacket (c) features a beam 
envelope (and hence a Gouy phase shift) that is a function of time, and an on-axis group velocity 
vg that is always exactly the speed of light in free space. The phase velocity vph is always 
superluminal in both cases. 
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3 Spectral domain analysis and fully closed-form spectrum expressions 

In this section, we derive and present fully analytical formulas for the spectral domain 

representations of forward-propagating solution (S1.1). By showing that (S1.1) contains no DC 

components and has non-zero components only in the positive ω-kz quadrant of the spectral 

domain, this analysis also confirms that (S1.1) (which is also Eq. (4) of the main text) is an 

impeccable description of a forward-propagating pulse.  

We define (S1.1) in the spectral domain as 

    tzrkk ,,ĤF̂F̂,, 0ztzr   ,  (S3.1) 

where Fourier transform operators zt F̂ ,F̂ and the zeroth-order Hankel transform operator 0Ĥ  are 

defined, together with their inverses, as (G, g some azimuthally-symmetric function) 
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where 0J  is the zeroth order Bessel function of the first kind. Due to the dispersion relation in a 

linear, homogeneous, time-invariant, isotropic medium,   must take the form 
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where   is the Dirac delta distribution. Using the expression for   in (S3.5), we note that 
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from which we see that   ,,c z
2
z

22
0 kk , the spectral function of (S1.1) on the surface of 

the light cone, may be calculated as  
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Evaluating the right-hand-side of (S3.7) is readily done with standard Fourier transform 

techniques, yielding the fully analytical expression 
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Equation (S3.8) is 0 when   = 0, showing that it is completely free of DC components. In addition, 

(S3.8) contains the Heaviside factors  czk  and  zk , which ensure that it has non-zero 

components only in the positive ω-kz quadrant of the spectral domain, on the surface of the light 

cone. From these observations, we conclude that (S1.1) is an impeccable description of a forward-

propagating pulse. We note in passing that these conclusions are also valid for all vector 

electromagnetic counterparts of (S1.1) since the operations that take the Hertz vectors to the 

electromagnetic fields (S1.3) are linear and thus do not introduce new spectral components.
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A1 Proving the absence of singularities in our exact pulse description 

The objective of this section is to prove that the pulse solution in (S1.1), which is also Eq. (4) of 

the main text, contains no singularities, which makes it the first exact and closed-form expression 

of a physical electromagnetic pulse. It is sufficient to establish the following statements: 

1.   0,,,,
~

Re  aatraR   and 

2.   0,,,,,,,1Re  sasatzrf , 

where all variables are as defined in Sections 1 and 2. To begin with, note that 
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where , . We solve (SA1.1) to obtain 
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In arriving at solutions (SA1.2), we choose the branches for the square-roots such that    and 

0 , the latter being necessary for a physically valid solution given the form of (S2.6) and the 

fact that we build our solution (S1.1) from components with 0z k . For convenience, we define 
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Now consider 
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Note that 
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from which it follows that hh ' . This implies that 
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so a , showing that Statement 1 is correct. Statement 2 immediately follows from this since 
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