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ABSTRACT: Fourier optics enforces a trade-off between length and
narrowness in electromagnetic wavepackets, so that a narrow spatial
focus diffracts at a large divergence angle, and only infinitely wide
beams can remain nondiffracting. We show that it is possible to bypass
this trade-off between the length and the narrowness of intensity
hotspots and find a family of electromagnetic wavepackets that
abruptly focus to and defocus from high-intensity regions of any aspect
ratio. Such features are potentially useful in scenarios where one would
like to avoid damaging the surrounding environment, for instance, to
target tumors very precisely in cancer treatment, drill holes of very precise dimensions in laser machining, or trigger nonlinear
processes in a well-defined region. In the process, we also construct the first closed-form solutions to Maxwell’s equations for
finite-energy electromagnetic pulses. These pulses also exhibit intriguing physics, with an on-axis intensity peak that always travels
at the speed of light despite inherent diffraction.
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The ability to tailor the shape of electromagnetic fields plays
an important role in contemporary physics research due

to its potential to transform the scientific and technological
landscape. Accelerating beams,1,2 abruptly autofocusing beams,3

beams with topological charge,4−6 needle beams,7 and beams
containing intricate vortex and field-line loops8,9 exhibit
fascinating physics and have applications that range from
materials processing to medical care.10−18 Long, narrow, and
well-localized hotspots are potentially very useful for
applications like high-aspect-ratio laser drilling of features
such as microfluidic channels. In many types of focused
electromagnetic wavepackets, however, a fundamental con-
straint prevents one from realizing high intensity regions that
are arbitrarily long and narrow. This constraint arises from
Fourier optics (equivalently, the Heisenberg Uncertainty
Principle if the wavepacket describes a single photon wave
function), which relates the spatial spread of a wavepacket in a
transverse dimension (say x) to its angular spread in the
corresponding wavevector (kx)

19,20

Δ Δ ≥x k 1/2x (1)

where Δ denotes the standard deviation of the associated
variable. Equation 1 correlates a high transverse localization
with a large momentum spread that destroys this localization
within a short distance of the focus in typical wavepackets. This
is the very reason a single-slit diffraction experiment, for
instance, produces an interference pattern that is much broader
when the slit is narrower.19,20 As Figure 1a,b illustrates, a trade-

off thus exists between the narrowness and length of the high
intensity region in typical electromagnetic wavepackets.
Here, we find a way around this fundamental trade-off by

formulating electromagnetic pulses such that the Fourier
transform limit correlates transverse localization with time t
instead of the propagation spatial dimension z. This approach
gives us temporally diffracting (TD) electromagnetic wave-
packets (Figure 1c), a special family of pulses that exhibit rich
spatiotemporal dynamics and intriguing physics. In particular,
they can create high-intensity regions of any finite length/width
aspect ratios, with strong transverse confinement (quasi-
Gaussian). These pulses feature an on-axis intensity peak that
always travels at the speed of light despite inherent diffraction,
as well as regimes of abrupt focusing and defocusing that
recommends them for applications where very specific regions
have to be targeted by intense fields.
Ongoing research into beam and pulse shaping continues to

reveal a wealth of specially shaped electromagnetic pulses.
These can always be described as a coherent superposition of
monochromatic beams of a range of frequencies, with notable
families of beams that can be naturally represented as
superpositions of Bessel beams21,22 and remain propagation
invariant in space. Other resulting superpositions can create
families of X-wave pulses,23,24 needle-like beams and
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pulses,7,25−30 and propagation-invariant pulses,25,26 as well as
accelerating1,2,31−33 and nonaccelerating26 airy-shaped pulses.
In comparison, our wavepackets are the first closed-form
description of finite-energy pulses in free space (“closed-form”
meaning an explicit analytical expression that requires no
numerical integrals). Such exact solutions of Maxwell’s
equations provide new insight into extreme pulse dynamics in
highly nonparaxial and short-duration pulses, revealing strong
intensity confinements in high aspect ratio hotspots.
To formulate a TD wavepacket, we first consider ψ =

ψ0(x,y,t,kz) exp(ikzz). According to the scalar electromagnetic
wave equation (∇2 − 1/c2∂t

2)ψ = 0 (from ψ, vector
electromagnetic fields are readily obtained via the Hertz
potentials, as discussed later), this wavepacket evolves as

ψ
ψ ψ

∂
∂

= ∇ −⊥t
c c kz

2
0

2
2 2
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where ∇⊥
2 ≡ ∂x

2 + ∂y
2 and c is the speed of light. Equation 2 is

similar to the Helmholtz equation (∇2ψ0 + ω2/c2ψ0) = 0, except
that, whereas the Helmholtz equation applies to a mono-
chromatic wavepacket of single angular frequency ω, eq 2
applies to a wavepacket containing a single kz component. A
general solution to the electromagnetic wave equation then
takes the form

∫ψ ψ=
−∞

∞
x y z t x y t k F k k( , , , ) ( , , ; ) ( )e dz z

ik z
z0

z

(3)

where F(kz) is an arbitrary distribution in kz. Equations 2 and 3
are a rewrite of the usual wavepacket formulation method in
which monochromatic components of different frequencies ω
are integrated or summed. However, this simple rewrite allows
a shift in perspective that simplifies the design of ultrashort and
few-cycle pulses as described below.
The regular Helmholtz equation correlates the dimensions of

the wavepacket in x and z via the Fourier transform limit,
leading to the trade-off in length and narrowness that makes
long and narrow intensity hotspots with strong transverse
confinement fundamentally impossible. To bypass this
restriction, eq 2 correlates the dimensions of the wavepacket
in x and t instead, necessitating a short pulse duration and,

hence, a wide frequency range to obtain a narrow beam waist.
For example, the wavepacket of 1.2 μm spot size in Figure 1c
has a frequency spread of 3.8%, giving a pulse duration of 9.7 fs.
This approach makes it possible to achieve intensity hotspots of
very large longitudinal extent and narrow transverse confine-
ment.
We introduce a new closed-form wavepacket solution of

Maxwell’s equations that illustrate the above properties. It is
given by the following scalar expression, from which the
vectorial electric and magnetic fields are readily obtained in
closed-form via the Hertz potentials, at cylindrical coordinates
(r, z) and time t:

ψ = − +
̃ ̃ + +− − − −
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where f ≡ 1 − k0(iz + a − R̃)/s, R̃ ≡ [r2 + (ict + a)2]1/2 is the
complex length, ω0 = k0c = 2πc/λ0 is the central angular
frequency of the pulse, and c is the speed of light in the linear,
homogeneous, time-invariant, and isotropic medium (e.g., free
space). To gain some physical intuition, we note that
parameters a and s control the focal spot size and pulse length
of the electromagnetic pulse.34 Vector solutions of electro-
magnetic fields E and H are readily obtained by treating the
scalar solution (eq 4) as a component of Hertz vectors Πe and
Πm, and applying the equations35
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where ε and μ are the medium’s permittivity and permeability,
respectively. For instance, the radially polarized TM10 (Figure
S1.1) and azimuthally polarized TE10 modes are obtained by
setting Πe = ψz,̂ Πm = 0, and Πe = 0, Πm = ψz,̂ respectively.
Linearly polarized fundamental modes (Figure S1.2) are
obtained by setting Πe = ψx ̂, Πm = 0, or Πe = 0, Πm = ψy,̂
or some linear combination thereof. The real electromagnetic
fields are then given by Re{E} and Re{H}. From eq 5, the

Figure 1. In Fourier optics, a fundamental trade-off exists between transverse confinement and defocusing length for monochromatic wavepackets as
well as many types of electromagnetic pulses. To exemplify this, the locally time-averaged energy densities of a linearly polarized Gaussian beam and
Bessel beam are shown in (a) and (b) respectively. A small spot size (1.22 μm diameter, wavelength λ0 = 0.8 μm) in a Gaussian beam (a) entails a
small confocal parameter, whereas the infinitely long Bessel profile (b) entails an infinite width inasmuch as it contains infinite power in its transverse
lobes. In temporally diffracting (TD) electromagnetic wavepackets, whose locally time-averaged energy density is shown in (c) for the case of linear
polarization, the trade-off between transverse confinement and defocusing length does not exist. Instead, waves of different frequencies are
superposed so that a different Fourier transform limit leads to a trade-off between transverse confinement and pulse duration, making any finite
length/width aspect ratio (here, 50000) possible. This method allows direct control over the spatial profile of the focus without being constrained by
Fourier optics. The aspect ratio at any Δω/ω0 can be controlled by adjusting the spread in kz (a larger aspect ratio entails a smaller kz spread). The
energy of the pulse remains finite for any finite spread in kz. Here, peak wavelength λ0 = 0.8 μm, i.e., peak frequency ω0 = 2πc/λ0 = 2.36 × 1015 rad/s
and standard deviation Δω/ω0 = 3.8%, implying a pulse duration of 9.7 fs.
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energy density of the field at time t is given by u(t) =
ε μ+t tE H[ Re{ ( )} Re{ ( )} ]/22 2 . For the convenience of
visualization, however, we use the locally time-averaged energy
density defined at time t as

ε μ̅ = · * + · *u t t t t tE E H H( )
1
4

[ ( ) ( ) ( ) ( )]
(6)

which is simply the energy density after averaging out local
oscillations due to the oscillatory nature of the electromagnetic
field. (The oscillations in some of the cases we study are too
numerous to resolve graphically; hence, we have adopted eq 6
instead of the nonaveraged version.)
Throughout this paper (including Figure 1c), we focus on

the linearly polarized TD wavepacket, which is given by

ε

Π

Π

= ∇ × ∇ ×

= ∂
∂

∇ ×
t

E

H

x

x (7)

where Πx = ψx ̂. Notably, eqs 4 and 7 contain neither counter-
propagating components nor singularities (proof in Supporting
Information (SI), section 1, and derivation of eq 4 in SI, section
2). This makes eqs 4 and 7 the first finite-energy scalar and
vector wavepackets (respectively) that are closed-form solutions
of Maxwell’s equations for an electromagnetic wavepacket that
is free of approximations. We also find a fully analytical formula
for the wavepacket in the spectral domain (SI, section 3), as
plotted in Figures 2d and 3f.
One reason that motivates the search for closed-form

solutions of finite-energy electromagnetic pulses is the accurate
modeling of single-cycle and subsingle-cycle pulses. The push

toward shorter laser pulse durations have motivated scientists
to seek nonparaxial descriptions for focused pulses in free
space. This has been a challenge that attracted much research
over more than 25 years.36−44 Although few-cycle pulses are
now regularly generated (and even experimentally demon-
strated at high intensities),45−48 all existing closed-form models
for these pulses still suffer from drawbacks like the existence of
points of divergence (where the field goes to infinity, which is
nonphysical) and backward propagating components. Equa-
tions 4 and 7, on the other hand, describe forward-propagating,
finite-energy pulses without any of these limitations. An
example of a tightly focused, few-cycle pulse modeled by eq
4 is given in Figure 2. Due to the increasing popularity of
intense, few-cycle pulses, this fully analytical description of such
pulses can be helpful in understanding ultrafast and nonparaxial
beam propagation phenomena that depart from the intuition of
the many-cycle, paraxial regime.
The parameter space of the TD wavepackets in eq 4 may be

divided into two regimes: the standard regime, which describes
a regular pulse, and the Abruptly Focusing Needle (AFN)
regime, which describes a new kind of abrupt 4D
spatiotemporal focusing of light into a strongly localized
needle-shaped region. We define the AFN regime by the
condition that the full-width-at-half-maximum (fwhm) length L
of the high intensity region at the focal time exceeds the
nominal confocal parameter k0w0

2, that is, L > k0w0
2, w0 being

the beam waist radius. An example of a wavepacket in the AFN
regime is shown in Figure 3, which shows an energy density
that peaks strongly in a highly concentrated needle-shaped
region (length/width aspect ratio of 50000 in Figure 3) near
the axis (r = 0) at the focal time. The extreme aspect ratio can

Figure 2. Closed-form, exact description of a tightly focused, few-cycle linearly polarized pulse. Snapshots of the propagating pulse are provided at t
= −0.6 ps (a), t = 0 (b), and t = 0.6 ps (c), with normalized locally time-averaged energy density and phase in the upper and lower panels,
respectively. The spot size at the focus is 4 μm (peak wavelength λ0 = 0.8 μm) and the full-width-at-half-maximum (fwhm) pulse duration is 7.75 fs
(2.9 cycles), corresponding to parameters a = s = 123. (d) Intensity of the pulse spectrum on the surface of the light cone, revealing a frequency
spread (standard deviation) of Δω/ω0 = 5.9%.
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be attributed to the small spread in kz in Figure 3f, in such a
way that causes the different frequency components to
constructively interfere only within the needle-shaped region
in a short window of time about the focal time. In fact, the
aspect ratio can be made arbitrarily large by making the spread
in kz arbitrarily small.
The plots in Figure 3 highlight the abruptness of the

temporal focusing and defocusing as well as the extreme spatial
localization: the energy density decays by orders of magnitude
as one moves just several cycles spatially or temporally from the
focal region. Therefore, the AFN spatial localization has
advantages over the Bessel-like or Airy-like transverse decay
in conventional needle and nondiffracting beams. This is
highlighted by the comparison with a Bessel beam’s energy
density profile in Figure 3d. The transverse confinement and
abruptness of focusing for other values of the parameter a are
examined in Figure 4. The AFN is especially useful in scenarios
where one would like to avoid damaging the surrounding
environment, because the spatiotemporal dynamics causes the
pulse to abruptly focus on the target spot and abruptly defocus
after it. When such dynamics is desirable, the rapid defocusing
of the pulse gives it unique advantages over previous
autofocusing beams that have secondary peaks after the
focus.3 For instance, the AFN can potentially be used to target
tumors very precisely in cancer treatment, drill holes of very
precise dimensions in laser machining, or trigger nonlinear
processes (e.g., multiphoton absorption) in a well-defined
region of 3D space.

We give further examples of linearly polarized and radially
polarized electromagnetic vector wavepackets in SI, section 1.
Equation 4 can also be used to generate infinite new classes of
solutions (e.g., counterparts of the paraxial Hermite-Gaussian,
Laguerre-Gaussian etc. families) since, for instance, any linear

Figure 3. Linearly polarized Abruptly Focusing Needle pulse. Snapshots of the propagating pulse are provided at t = −0.6 ns (a), t = 0 (b), and t =
0.6 ns (c). Spot size at the focus is 1.22 μm (peak wavelength λ0 = 0.8 μm) and the needle length at the focal time is 6 cm, corresponding to a
length/width aspect ratio of 50000. For this case, a = 12.3 and s = 85 × 109. (d) Transverse decay of the locally time-averaged energy density at t = 0,
revealing excellent transverse confinement that is superior to a Bessel beam of equivalent main lobe spot size. The abrupt focusing and defocusing
nature of the AFN pulse is shown in (e). (f) Intensity of the pulse spectrum on the surface of the light cone, revealing a frequency spread (standard
deviation) of Δω/ω0 = 3.8%, which gives a fwhm pulse duration of 9.7 fs.

Figure 4. Strong localization in both space and time of linearly
polarized Abruptly Focusing Needle (AFN) pulses. The transverse
energy density profiles at the focal plane for various a are shown in (a),
where we see a rapid decay: exponential for r ≪ a; for very large r
values, the decay is proportional to r−2s−8, but by then the energy
density has already fallen by tens of orders of magnitude. The
maximum energy density over all space as a function of time is shown
in (b). At small values of a, the peak energy density increases by many
orders of magnitude as the pulse approaches the focus. As an example,
the energy density of the k0a = 0.3 case increases by almost 5 orders of
magnitude as the pulse traverses a mere distance of 18 μm in a time of
60 fs.
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combination of any multiplicity of partial derivatives in space
and time of eq 4 is also a solution of the wave equation.
Additional families are possible by substituting complex values
for s. Importantly, any member of such a family constitutes a
pulse of finite energy, unlike many conventional beams and
pulses (e.g., plane waves, Airy beams,1 general accelerating
beams,2 and Bessel beams49) that must be truncated in order to
carry finite energy. Note that the most well-known existing
analytical solution of an electromagnetic pulse, the conven-
tional complex-source-point solution,36,44 also carries finite
energy. However, it consists of both forward and backward
propagating components, which make it an approximate
description (removing the backward propagating components
results in a pulse with diverging amplitudes at singular points).
By applying the paraxial, many-cycle limit k0a ≫ 1, s ≫ 1,

with s ≫ k0a, we obtain the fundamental relation between the
transverse width and pulse duration. Equation 4 reduces to the
result

ψ σ≈ − − −
⎡
⎣⎢

⎤
⎦⎥ik z ct

k
s

z ctexp[ ( )] exp
2

( )0
0
2
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with the beam envelope given by
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Equation 9 relates the fwhm pulse duration τ to the waist radius
w0 as

τ =
k w

c
0 0

2

(10)

A short pulse duration is thus associated with high transverse
confinement, but any finite length/width aspect ratio in eq 8 is
possible for any pulse duration and transverse width. Given that
eq 2 is mathematically similar in form to the Helmholtz
equation, it is not surprising that eq 10 is reminiscent of the
relation between the confocal parameter and beam waist in the
conventional Gaussian beam solution of the paraxial Helmholtz
equation. For a beam waist diameter of 1.22 μm and
wavelength 0.8 μm, eq 10 predicts a pulse duration of 9.7 fs,
which agrees with the temporal fwhm obtained via exact
numerical integration in Figures 1 and 3.
Another noteworthy feature of eq 4 is that the velocity of the

on-axis intensity-peak is always exactly luminal, a fact which
holds regardless of pulse duration and focusing, and in spite of

the superluminal on-axis phase velocity. This can be seen
directly by setting r = 0 in eq 4, to give

ψ = −
+ +

+ +
= + +
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where f 0 ≡ 1 − ik0(z − ct)/s. From eq 11, we note that for any
given t, the peak intensity always occurs at z = ct, where the
minimum of |f 0| is located and where the parenthesized
expression in eq 11 thus peaks. Hence, the on-axis peak
intensity moves with speed c, even as the off-axis part of the
pulse causes the overall pulse centroid to move slower than c.
An illustration comparing these aspects of the TD wavepacket
with those of the standard Gaussian beam solution is provided
by Figure S2.1, in Supporting Information, section 2. Having
the pulse peak maintain the speed of light despite the inevitable
diffraction is very useful for light−matter interactions taking
place close to the laser beam axis, such as laser-driven particle
acceleration.50,51

Pulse shaping in both space and time is widely used today to
realize user-designed electromagnetic fields, although it can still
be challenging especially for ultrashort pulses in the optical
range.52,33 The use of pre-engineered phase masks and
amplitude masks or of spatial light modulators (SLMs), in
either real space or Fourier space, is probably the most viable
option for realizing these pulses experimentally for optical
frequencies.33 New methods of spatiotemporal pulse shaping
continue to be discovered and broaden the range of alternative
approaches.53 We next analyze a possible realization through
time-dependent current distributions (Figure 5) located far
from the respective focal regions, that would generate the
wavepackets studied in Figures 2 and 3. Specifically, Figure 5
shows the localized current distributions Re{Js} in the x−y
plane at a given z that can produce the TD wavepackets of
Figures 2 and 3 in the far-field. The current distributions may
be analytically determined via the expression Js = z ̂ × H = Jsyy.̂

35

As we see in Figure 5, current modulations on the order of the
carrier period (2.7 fs here since we chose a central wavelength
of 0.8 μm) are required. It may be possible to induce such
current density modulations using an ordinary pulsed laser
incident on a metasurface, where nanoantenna arrays are used
to create the desired current distributions. Alternatively, since
the Maxwell equations are scale-invariant, one can demonstrate
a proof-of-principle electromagnetic TD microwave pulse, by
driving an antenna array that supports the modulated electric

Figure 5. Surface current densities localized along a plane that are capable of generating the wavepackets shown in Figure 2 (corresponds to (a)) and
Figure 3 (corresponds to (b) and (c)). In (b), the magnitude of the current density is shown instead of the current density itself as the latter’s
variations are too fine to be resolved in this graphic. (c) Current density in a zoomed-in portion of (b).
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current shown in Figure 5, after scaling the result to microwave
frequencies.
We have introduced a new class of electromagnetic pulses

that can create high intensity regions of arbitrary finite
dimensions in free space, circumventing the trade-off between
length and narrowness typically enforced by Fourier optics. The
pulses we introduce reveal the ability of Maxwell’s equations to
support abruptly focusing needles of light (more generally, the
TD pulses we introduce are valid in linear, homogeneous, time-
invariant and isotropic media and not just free space). We can
directly infer this from our closed-form finite-energy pulse
solutions of Maxwell’s equations. These pulses, presented in
eqs 4 and 7, exhibit additional intriguing physical phenomena
including an exactly luminal on-axis peak velocity. The ability to
create highly localized intensity hotspots of any finite aspect
ratio is promising for scenarios where one would like to avoid
damaging surrounding environment, for instance, to minimize
damage of healthy tissue surrounding cancer tissue. Potential
applications range from high-precision pump−probe spectros-
copy and laser-driven particle acceleration, to laser nanosurgery
and high-aspect-ratio laser drilling of features like microfluidic
channels.
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